HOME

TheInfoList



OR:

In the
history of calculus Calculus, originally called infinitesimal calculus, is a mathematical discipline focused on limits, continuity, derivatives, integrals, and infinite series. Many elements of calculus appeared in ancient Greece, then in China and the Middle East ...
, the calculus controversy (german: Prioritätsstreit, lit=priority dispute) was an argument between the mathematicians
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, Theology, theologian, and author (described in his time as a "natural philosophy, natural philosopher"), widely ...
and
Gottfried Wilhelm Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of ...
over who had first invented
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
. The question was a major intellectual controversy, which began simmering in 1699 and broke out in full force in 1711. Leibniz had published his work first, but Newton's supporters accused Leibniz of
plagiarizing Plagiarism is the fraudulent representation of another person's language, thoughts, ideas, or expressions as one's own original work.From the 1995 '' Random House Compact Unabridged Dictionary'': use or close imitation of the language and thought ...
Newton's unpublished ideas. Leibniz died in disfavor in 1716 after his patron, the
Elector Elector may refer to: * Prince-elector or elector, a member of the electoral college of the Holy Roman Empire, having the function of electing the Holy Roman Emperors * Elector, a member of an electoral college ** Confederate elector, a member of ...
Georg Ludwig of
Hanover Hanover (; german: Hannover ; nds, Hannober) is the capital and largest city of the German state of Lower Saxony. Its 535,932 (2021) inhabitants make it the 13th-largest city in Germany as well as the fourth-largest city in Northern Germany ...
, became
King George I of Great Britain George I (George Louis; ; 28 May 1660 – 11 June 1727) was King of Great Britain and Ireland from 1 August 1714 and ruler of the Electorate of Hanover within the Holy Roman Empire from 23 January 1698 until his death in 1727. He was the first ...
in 1714. The modern consensus is that the two men developed their ideas independently. Newton said he had begun working on a form of calculus (which he called " the method of fluxions and fluents") in 1666, at the age of 23, but did not publish it except as a minor annotation in the back of one of his publications decades later (a relevant Newton manuscript of October 1666 is now published among his mathematical papers). Gottfried Leibniz began working on his variant of calculus in 1674, and in 1684 published his first paper employing it, "". L'Hôpital published a text on Leibniz's calculus in 1696 (in which he recognized that Newton's of 1687 was "nearly all about this calculus"). Meanwhile, Newton, though he explained his (geometrical) form of calculus in Section I of Book I of the of 1687, did not explain his eventual
fluxional In chemistry and molecular physics, fluxional (or non-rigid) molecules are molecules that undergo dynamics such that some or all of their atoms interchange between symmetry-equivalent positions. Because virtually all molecules are fluxional in s ...
notation for the calculus Marquis de l'Hôpital's original words about the 'Principia': "lequel est presque tout de ce calcul": see the preface to his ''Analyse des Infiniment Petits'' (Paris, 1696). The ''Principia'' has been called "a book dense with the theory and application of the infinitesimal calculus" also in modern times: see Clifford Truesdell, ''Essays in the History of Mechanics'' (Berlin, 1968), at p.99; for a similar view of another modern scholar see also in print until 1693 (in part) and 1704 (in full). The prevailing opinion in the 18th century was against Leibniz (in Britain, not in the German-speaking world). Today the consensus is that Leibniz and Newton independently invented and described the calculus in Europe in the 17th century. One author has identified the dispute as being about "profoundly different" methods: On the other hand, other authors have emphasized the equivalences and mutual translatability of the methods: here N Guicciardini (2003) appears to confirm L'Hôpital (1696) (already cited):


Scientific priority in the 17th century

In the 17th century, as at the present time, the question of
scientific priority In science, priority is the credit given to the individual or group of individuals who first made the discovery or propose the theory. Fame and honours usually go to the first person or group to publish a new finding, even if several researchers arr ...
was of great importance to scientists. However, during this period,
scientific journal In academic publishing, a scientific journal is a periodical publication intended to further the progress of science, usually by reporting new research. Content Articles in scientific journals are mostly written by active scientists such ...
s had just begun to appear, and the generally accepted mechanism for fixing priority by publishing information about the discovery had not yet been formed. Among the methods used by scientists were
anagram An anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once. For example, the word ''anagram'' itself can be rearranged into ''nag a ram'', also the word ...
s, sealed envelopes placed in a safe place, correspondence with other scientists, or a private message. A letter to the founder of the
French Academy of Sciences The French Academy of Sciences (French: ''Académie des sciences'') is a learned society, founded in 1666 by Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French scientific research. It was at ...
,
Marin Mersenne Marin Mersenne, OM (also known as Marinus Mersennus or ''le Père'' Mersenne; ; 8 September 1588 – 1 September 1648) was a French polymath whose works touched a wide variety of fields. He is perhaps best known today among mathematicians for ...
for a French scientist, or to the secretary of the
Royal Society of London The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, r ...
,
Henry Oldenburg Henry Oldenburg (also Henry Oldenbourg) FRS (c. 1618 as Heinrich Oldenburg – 5 September 1677), was a German theologian, diplomat, and natural philosopher, known as one of the creators of modern scientific peer review. He was one of the fo ...
for English, had practically the status of a published article. The discoverer could 'time-stamp' the moment of his discovery, and prove that he knew of it at the point the letter was sealed, and had not copied it from anything subsequently published. Nevertheless, where an idea was subsequently published in conjunction with its use in a particularly valuable context, this might take priority over an earlier discoverer's work, which had no obvious application. Further, a mathematician's claim could be undermined by counter-claims that he had not truly invented an idea, but merely improved on someone else's idea, an improvement that required little skill, and was based on facts that were already known. A series of high-profile disputes about the scientific priority of the 17th century – the era that the American science historian D. Meli called "the golden age of the mud-slinging priority disputes" – is associated with the name
Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of ma ...
. The first of them occurred at the beginning of 1673, during his first visit to London, when in the presence of the famous mathematician John Pell he presented his method of approximating series by differences. To Pell’s remark that this discovery had already been made by François Regnaud and published in 1670 in
Lyon Lyon,, ; Occitan: ''Lion'', hist. ''Lionés'' also spelled in English as Lyons, is the third-largest city and second-largest metropolitan area of France. It is located at the confluence of the rivers Rhône and Saône, to the northwest of ...
by Gabriel Mouton, Leibniz answered the next day. In a letter to Oldenburg, he wrote that, having looked at Mouton's book, he admits Pell was right, but in his defense, he can provide his draft notes, which contain nuances not found by Renault and Mouton. Thus, the integrity of Leibniz was proved, but in this case, he was recalled later. On the same visit to London, Leibniz was in the opposite position. February 1, 1673, at a meeting of the Royal Society of London, he demonstrated his
mechanical calculator A mechanical calculator, or calculating machine, is a mechanical device used to perform the basic operations of arithmetic automatically, or (historically) a simulation such as an analog computer or a slide rule. Most mechanical calculators w ...
. The curator of the experiments of the Society,
Robert Hooke Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
, carefully examined the device and even removed the back cover for this. A few days later, in the absence of Leibniz, Hooke criticized the German scientist's machine, saying that he could make a simpler model. Leibniz, who learned about this, returned to Paris and categorically rejected Hooke’s claim in a letter to Oldenburg and formulated principles of correct scientific behavior: "We know that respectable and modest people prefer it when they think of something that is consistent with what someone's done other discoveries, ascribe their own improvements and additions to the discoverer, so as not to arouse suspicions of intellectual dishonesty, and the desire for true generosity should pursue them, instead of the lying thirst for dishonest profit." To illustrate the proper behavior, Leibniz gives an example of
Nicolas-Claude Fabri de Peiresc Nicolas-Claude Fabri de Peiresc (1 December 1580 – 24 June 1637), often known simply as Peiresc, or by the Latin form of his name, Peirescius, was a French astronomer, antiquary and savant, who maintained a wide correspondence with scientis ...
and
Pierre Gassendi Pierre Gassendi (; also Pierre Gassend, Petrus Gassendi; 22 January 1592 – 24 October 1655) was a French philosopher, Catholic priest, astronomer, and mathematician. While he held a church position in south-east France, he also spent much t ...
, who performed astronomical observations similar to those made earlier by
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He ...
and
Johannes Hevelius Johannes Hevelius Some sources refer to Hevelius as Polish: * * * * * * * Some sources refer to Hevelius as German: * * * * *of the Royal Society * (in German also known as ''Hevel''; pl, Jan Heweliusz; – 28 January 1687) was a councillor ...
, respectively. Learning that they did not make their discoveries first, French scientists passed on their data to the discoverers. Newton's approach to the priority problem can be illustrated by the example of the discovery of the
inverse-square law In science, an inverse-square law is any scientific law stating that a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be unders ...
as applied to the dynamics of bodies moving under the influence of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. Based on an analysis of
Kepler's laws In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbi ...
and his own calculations,
Robert Hooke Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
made the assumption that motion under such conditions should occur along orbits similar to elliptical. Unable to rigorously prove this claim, he reported it to Newton. Without further entering into correspondence with Hooke, Newton solved this problem, as well as the inverse to it, proving that the law of inverse-squares follows from the ellipticity of the orbits. This discovery was set forth in his famous work ''
Philosophiæ Naturalis Principia Mathematica (English: ''Mathematical Principles of Natural Philosophy'') often referred to as simply the (), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The ''Principia'' is written in Latin and ...
'' without indicating the name Hooke. At the insistence of astronomer
Edmund Halley Edmond (or Edmund) Halley (; – ) was an English astronomer, mathematician and physicist. He was the second Astronomer Royal in Britain, succeeding John Flamsteed in 1720. From an observatory he constructed on Saint Helena in 1676–77, Hal ...
, to whom the manuscript was handed over for editing and publication, the phrase was included in the text that the compliance of Kepler's first law with the law of inverse squares was "independently approved by
Wren Wrens are a family of brown passerine birds in the predominantly New World family Troglodytidae. The family includes 88 species divided into 19 genera. Only the Eurasian wren occurs in the Old World, where, in Anglophone regions, it is commonl ...
, Hooke and Halley." According to the remark of Vladimir Arnold, Newton, choosing between refusal to publish his discoveries and constant struggle for priority, chose both of them.


Background


Invention of differential and integral calculus

By the time of Newton and Leibniz, European mathematicians had already made a significant contribution to the formation of the ideas of mathematical analysis. The Dutchman
Simon Stevin Simon Stevin (; 1548–1620), sometimes called Stevinus, was a Flemish mathematician, scientist and music theorist. He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated vario ...
(1548–1620), the Italian
Luca Valerio Luca Valerio (1553–1618) was an Italian mathematician. He developed ways to find volumes and centers of gravity of solid bodies using the methods of Archimedes. He corresponded with Galileo Galilei and was a member of the Accademia dei Lincei ...
(1553–1618), the German
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
(1571–1630) were engaged in the development of the ancient "
method of exhaustion The method of exhaustion (; ) is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the difference in are ...
" for calculating areas and volumes. The latter's ideas, apparently, influenced – directly or through
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He ...
– on the "
method of indivisibles In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows: * 2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that p ...
" developed by
Bonaventura Cavalieri Bonaventura Francesco Cavalieri ( la, Bonaventura Cavalerius; 1598 – 30 November 1647) was an Italian mathematician and a Jesuate. He is known for his work on the problems of optics and motion, work on indivisibles, the precursors of in ...
(1598–1647). The last years of Leibniz's life, 1710–1716, were embittered by a long controversy with John Keill, Newton, and others, over whether Leibniz had discovered calculus independently of Newton, or whether he had merely invented another notation for ideas that were fundamentally Newton's. No participant doubted that Newton had already developed his method of fluxions when Leibniz began working on the differential calculus, yet there was seemingly no proof beyond Newton's word. He had published a calculation of a tangent with the note: "This is only a special case of a general method whereby I can calculate curves and determine maxima, minima, and centers of gravity." How this was done he explained to a pupil a full 20 years later, when Leibniz's articles were already well-read. Newton's manuscripts came to light only after his death. The infinitesimal calculus can be expressed either in the notation of fluxions or in that of differentials, or, as noted above, it was also expressed by Newton in geometrical form, as in the ''Principia'' of 1687. Newton employed fluxions as early as 1666, but did not publish an account of his notation until 1693. The earliest use of differentials in Leibniz's notebooks may be traced to 1675. He employed this notation in a 1677 letter to Newton. The differential notation also appeared in Leibniz's memoir of 1684. The claim that Leibniz invented the calculus independently of Newton rests on the basis that Leibniz: # published a description of his method some years before Newton printed anything on fluxions, # always alluded to the discovery as being his own invention (this statement went unchallenged for some years), # enjoyed the strong presumption that he acted in good faith, and # demonstrated in his private papers his development of the ideas of calculus in a manner independent of the path taken by Newton. According to Leibniz's detractors, the fact that Leibniz's claim went unchallenged for some years is immaterial. To rebut this case it is sufficient to show that he: * saw some of Newton's papers on the subject in or before 1675 or at least 1677, and * obtained the fundamental ideas of the calculus from those papers. No attempt was made to rebut #4, which was not known at the time, but which provides the strongest of the evidence that Leibniz came to the calculus independently from Newton. This evidence, however, is still questionable based on the discovery, in the inquest and after, that Leibniz both back-dated and changed fundamentals of his "original" notes, not only in this intellectual conflict, but in several others. He also published "anonymous" slanders of Newton regarding their controversy which he tried, initially, to claim he was not author of. If good faith is nevertheless assumed, however, Leibniz's notes as presented to the inquest came first to integration, which he saw as a generalization of the summation of infinite series, whereas Newton began from derivatives. However, to view the development of calculus as entirely independent between the work of Newton and Leibniz misses the point that both had some knowledge of the methods of the other (though Newton did develop most fundamentals before Leibniz started) and in fact worked together on a few aspects, in particular
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a con ...
, as is shown in a letter to
Henry Oldenburg Henry Oldenburg (also Henry Oldenbourg) FRS (c. 1618 as Heinrich Oldenburg – 5 September 1677), was a German theologian, diplomat, and natural philosopher, known as one of the creators of modern scientific peer review. He was one of the fo ...
dated 24 October 1676, where Newton remarks that Leibniz had developed a number of methods, one of which was new to him. Both Leibniz and Newton could see by this exchange of letters that the other was far along towards the calculus (Leibniz in particular mentions it) but only Leibniz was prodded thereby into publication. That Leibniz saw some of Newton's manuscripts had always been likely. In 1849, C. I. Gerhardt, while going through Leibniz's manuscripts, found extracts from Newton's '' De Analysi per Equationes Numero Terminorum Infinitas'' (published in 1704 as part of the ''De Quadratura Curvarum'' but also previously circulated among mathematicians starting with Newton giving a copy to
Isaac Barrow Isaac Barrow (October 1630 – 4 May 1677) was an English Christian theologian and mathematician who is generally given credit for his early role in the development of infinitesimal calculus; in particular, for proof of the fundamental theorem ...
in 1669 and Barrow sending it to John Collins) in Leibniz's handwriting, the existence of which had been previously unsuspected, along with notes re-expressing the content of these extracts in Leibniz's differential notation. Hence when these extracts were made becomes all-important. It is known that a copy of Newton's manuscript had been sent to
Ehrenfried Walther von Tschirnhaus Ehrenfried Walther von Tschirnhaus (or Tschirnhauß, ; 10 April 1651 – 11 October 1708) was a German mathematician, physicist, physician, and philosopher. He introduced the Tschirnhaus transformation and is considered by some to have been th ...
in May 1675, a time when he and Leibniz were collaborating; it is not impossible that these extracts were made then. It is also possible that they may have been made in 1676, when Leibniz discussed analysis by
infinite series In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, math ...
with Collins and Oldenburg. It is probable that they would have then shown him the manuscript of Newton on that subject, a copy of which one or both of them surely possessed. On the other hand, it may be supposed that Leibniz made the extracts from the printed copy in or after 1704. Shortly before his death, Leibniz admitted in a letter to ''
Abbé ''Abbé'' (from Latin ''abbas'', in turn from Greek , ''abbas'', from Aramaic ''abba'', a title of honour, literally meaning "the father, my father", emphatic state of ''abh'', "father") is the French word for an abbot. It is the title for low ...
''
Antonio Schinella Conti Antonio Schinella Conti (1677–1749), also known by his religious title as Abate Conti, was an Italian writer, translator, mathematician, philosopher and physicist. He was born in Padua on 22 January 1677 and died there on 6 April 1749. Life In ...
, that in 1676 Collins had shown him some of Newton's papers, but Leibniz also implied that they were of little or no value. Presumably he was referring to Newton's letters of 13 June and 24 October 1676, and to the letter of 10 December 1672, on the method of
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
s, extracts from which accompanied the letter of 13 June. Whether Leibniz made use of the manuscript from which he had copied extracts, or whether he had previously invented the calculus, are questions on which no direct evidence is available at present. It is, however, worth noting that the unpublished Portsmouth Papers show that when Newton went carefully into the whole dispute in 1711, he picked out this manuscript as the one which had probably somehow fallen into Leibniz's hands. At that time there was no direct evidence that Leibniz had seen Newton's manuscript before it was printed in 1704; hence Newton's conjecture was not published. But Gerhardt's discovery of a copy made by Leibniz tends to confirm its accuracy. Those who question Leibniz's good faith allege that to a man of his ability, the manuscript, especially if supplemented by the letter of 10 December 1672, sufficed to give him a clue as to the methods of the calculus. Since Newton's work at issue did employ the fluxional notation, anyone building on that work would have to invent a notation, but some deny this.


Development

The quarrel was a retrospective affair. In 1696, already some years later than the events that became the subject of the quarrel, the position still looked potentially peaceful: Newton and Leibniz had each made limited acknowledgements of the other's work, and L'Hôpital's 1696 book about the calculus from a Leibnizian point of view had also acknowledged Newton's published work of the 1680s as "nearly all about this calculus" ("''presque tout de ce calcul''"), while expressing preference for the convenience of
Leibniz's notation In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols and to represent infinitely small (or infinitesimal) increments of and , respectively, just a ...
. At first, there was no reason to suspect Leibniz's good faith. In 1699, Nicolas Fatio de Duillier, a Swiss mathematician known for his work on the zodiacal light problem, publicly accused Leibniz of
plagiarizing Plagiarism is the fraudulent representation of another person's language, thoughts, ideas, or expressions as one's own original work.From the 1995 '' Random House Compact Unabridged Dictionary'': use or close imitation of the language and thought ...
Newton, although he privately had accused Leibniz of plagiarism twice in letters to Christiaan Huygens in 1692.M. Palomo, p. 32; Palomo, Miguel (2021), New Insight Into the Origins of the Calculus War, Annals of Science 78:1, pages 22–40 https://doi.org/10.1080/00033790.2020.1794038 It was not until the 1704 publication of an anonymous review of Newton's tract on quadrature, a review implying that Newton had borrowed the idea of the fluxional calculus from Leibniz, that any responsible mathematician doubted that Leibniz had invented the calculus independently of Newton. With respect to the review of Newton's quadrature work, all admit that there was no justification or authority for the statements made therein, which were rightly attributed to Leibniz. But the subsequent discussion led to a critical examination of the whole question, and doubts emerged. Had Leibniz derived the fundamental idea of the calculus from Newton? The case against Leibniz, as it appeared to Newton's friends, was summed up in th
''Commercium Epistolicum''
of 1712, which referenced all allegations. This document was thoroughly machined by Newton. No such summary (with facts, dates, and references) of the case for Leibniz was issued by his friends; but
Johann Bernoulli Johann Bernoulli (also known as Jean or John; – 1 January 1748) was a Swiss mathematician and was one of the many prominent mathematicians in the Bernoulli family. He is known for his contributions to infinitesimal calculus and educating Le ...
attempted to indirectly weaken the evidence by attacking the personal character of Newton in a letter dated 7 June 1713. When pressed for an explanation, Bernoulli most solemnly denied having written the letter. In accepting the denial, Newton added in a private letter to Bernoulli the following remarks, Newton's claimed reasons for why he took part in the controversy. He said, "I have never grasped at fame among foreign nations, but I am very desirous to preserve my character for honesty, which the author of that epistle, as if by the authority of a great judge, had endeavoured to wrest from me. Now that I am old, I have little pleasure in mathematical studies, and I have never tried to propagate my opinions over the world, but I have rather taken care not to involve myself in disputes on account of them." Leibniz explained his silence as follows, in a letter to Conti dated 9 April 1716: To Newton's staunch supporters this was a case of Leibniz's word against a number of contrary, suspicious details. His unacknowledged possession of a copy of part of one of Newton's manuscripts may be explicable; but it appears that on more than one occasion, Leibniz deliberately altered or added to important documents (e.g., the letter of 7 June 1713 in the '' Charta Volans'', and that of 8 April 1716 in the ''
Acta Eruditorum (from Latin: ''Acts of the Erudite'') was the first scientific journal of the German-speaking lands of Europe, published from 1682 to 1782. History ''Acta Eruditorum'' was founded in 1682 in Leipzig by Otto Mencke, who became its first editor, ...
''), before publishing them, and falsified a date on a manuscript (1675 being altered to 1673). All this casts doubt on his testimony. Considering Leibniz's intellectual prowess, as demonstrated by his other accomplishments, he had more than the requisite ability to invent the calculus. What he is alleged to have received was a number of suggestions rather than an account of calculus; it is possible, since he did not publish his results of 1677 until 1684 and since differential notation was his invention, that Leibniz minimized, 30 years later, any benefit he might have enjoyed from reading Newton's manuscript. Moreover, he may have seen the question of who originated the calculus as immaterial when set against the expressive power of his notation. In any event, a bias favoring Newton tainted the whole affair from the outset. The
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
, of which Isaac Newton was president at the time, set up a committee to pronounce on the priority dispute, in response to a letter it had received from Leibniz. That committee never asked Leibniz to give his version of the events. The report of the committee, finding in favor of Newton, was written and published as "Commercium Epistolicum" (mentioned above) by Newton early in 1713. But Leibniz did not see it until the autumn of 1714.


An extinguished dispute. After 1715

Leibniz never agreed to acknowledge Newton's priority in inventing calculus. He also tried to write his own version of the history of differential calculus, but, as in the case of the history of the rulers of Braunschweig, he did not complete the matter. At the end of 1715, Leibniz accepted
Johann Bernoulli Johann Bernoulli (also known as Jean or John; – 1 January 1748) was a Swiss mathematician and was one of the many prominent mathematicians in the Bernoulli family. He is known for his contributions to infinitesimal calculus and educating Le ...
's offer to organize another mathematician competition, in which different approaches had to prove their worth. This time the problem was taken from the area later called the
calculus of variations The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
– it was required to construct a tangent line to a family of curves. A letter with the wording was written on 25 November and transmitted in London to Newton through Abate Conti. The problem was formulated in not very clear terms, and only later it became clear that it was required to find a general, and not a particular, as Newton understood, solution. After the British side published their decision, Leibniz published his, more general, and, thus, formally won this competition. For his part, Newton stubbornly sought to destroy his opponent. Not having achieved this with the "Report", he continued his painstaking research, spending hundreds of hours on it. His next study, entitled "Observations upon the preceding Epistle", was inspired by a letter from Leibniz to Conti in March 1716, which criticized Newton's philosophical views; no new facts were given in this document. With Leibniz's death in November 1716, the controversy gradually subsided. According to A. Rupert Hall, after 1722 this question ceased to interest Newton himself.


See also

* Possibility of transmission of Kerala School results to Europe * List of scientific priority disputes


References

*


Sources

* W. W. Rouse Ball (1908) ''A Short Account of the History of Mathematics''], 4th ed. * Richard C. Brown (2012) ''Tangled origins of the Leibnitzian Calculus: A case study of mathematical revolution'',
World Scientific World Scientific Publishing is an academic publisher of scientific, technical, and medical books and journals headquartered in Singapore. The company was founded in 1981. It publishes about 600 books annually, along with 135 journals in various ...
*
Ivor Grattan-Guinness Ivor Owen Grattan-Guinness (23 June 1941 – 12 December 2014) was a historian of mathematics and logic. Life Grattan-Guinness was born in Bakewell, England; his father was a mathematics teacher and educational administrator. He gained his b ...
(1997) ''The Norton History of the Mathematical Sciences''. W W Norton. * Hall, A. R. (1980) ''Philosophers at War: The Quarrel between Newton and Gottfried Leibniz''.
Cambridge University Press Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer. Cambridge University Pr ...
. * Stephen Hawking (1988) '' A Brief History of Time From the Big Bang to Black Holes.''
Bantam Books Bantam Books is an American publishing house owned entirely by parent company Random House, a subsidiary of Penguin Random House; it is an imprint of the Random House Publishing Group. It was formed in 1945 by Walter B. Pitkin, Jr., Sidney B. ...
. * Kandaswamy, Anand.
''The Newton/Leibniz Conflict in Context''
* * * * *


External links

* Gottfried Wilhelm Leibniz, ''Sämtliche Schriften und Briefe, Reihe VII: Mathematische Schriften, vol. 5: Infinitesimalmathematik 1674-1676'', Berlin: Akademie Verlag, 2008, pp
288–295
("Analyseos tetragonisticae pars secunda", 29 October 1675) an
321–331
("Methodi tangentium inversae exempla", 11 November 1675). * Gottfried Wilhelm Leibniz, "Nova Methodus pro Maximis et Minimis...", 168
(Latin original)(English translation)
* Isaac Newton, "Newton's Waste Book (Part 3) (Normalized Version)": 16 May 1666 entry (The Newton Project) * Isaac Newton
"De Analysi per Equationes Numero Terminorum Infinitas (Of the Quadrature of Curves and Analysis by Equations of an Infinite Number of Terms)"
in: ''Sir Isaac Newton's Two Treatises'', James Bettenham, 1745. {{DEFAULTSORT:Leibniz-Newton calculus controversy 17th-century controversies 18th-century controversies 17th century in science 18th century in science Gottfried Wilhelm Leibniz History of calculus Isaac Newton Scientific rivalry Discovery and invention controversies Plagiarism controversies