HOME

TheInfoList



OR:

A laminated steel blade or piled steel is a
knife A knife ( : knives; from Old Norse 'knife, dirk') is a tool or weapon with a cutting edge or blade, usually attached to a handle or hilt. One of the earliest tools used by humanity, knives appeared at least 2.5 million years ago, as evid ...
,
sword A sword is an edged, bladed weapon intended for manual cutting or thrusting. Its blade, longer than a knife or dagger, is attached to a hilt and can be straight or curved. A thrusting sword tends to have a straighter blade with a pointed ti ...
, or other
tool A tool is an object that can extend an individual's ability to modify features of the surrounding environment or help them accomplish a particular task. Although many animals use simple tools, only human beings, whose use of stone tools dates b ...
blade made out of layers of differing types of
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistan ...
, rather than a single homogeneous
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductili ...
. The earliest steel blades were laminated out of necessity, due to the early
bloomery A bloomery is a type of metallurgical furnace once used widely for smelting iron from its oxides. The bloomery was the earliest form of smelter capable of smelting iron. Bloomeries produce a porous mass of iron and slag called a ''bloom' ...
method of
smelt Smelt may refer to: * Smelting, chemical process * The common name of various fish: ** Smelt (fish), a family of small fish, Osmeridae ** Australian smelt in the family Retropinnidae and species ''Retropinna semoni'' ** Big-scale sand smelt ''A ...
ing
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
, which made production of steel expensive and inconsistent. Laminated steel offered both a way to average out the properties of the steel, as well as a way to restrict high carbon steel to the areas that needed it most. Laminated steel blades are still produced today for specialized applications, where different requirements at different points in the blade are met by use of different alloys,
forge A forge is a type of hearth used for heating metals, or the workplace (smithy) where such a hearth is located. The forge is used by the smith to heat a piece of metal to a temperature at which it becomes easier to shape by forging, or to th ...
d together into a single blade.


Technique

Piled steel developed out of the necessarily complex process of making blades that were both hard and tough from the erratic and unsuitable output from early iron smelting in bloomeries. The bloomery does not generate temperatures high enough to melt iron and steel, but instead reduces the
iron oxide Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of wh ...
ore into particles of pure iron, which then weld into a mass of sponge iron, consisting of lumps of impurities in a matrix of relatively pure iron, with a carbon content of around 0.06%. The bloom must then be heated and hammered to work out the impurities, resulting in the relatively soft
wrought iron Wrought iron is an iron alloy with a very low carbon content (less than 0.08%) in contrast to that of cast iron (2.1% to 4%). It is a semi-fused mass of iron with fibrous slag inclusions (up to 2% by weight), which give it a wood-like "grain" ...
. Iron is too soft to make a good cutting edge; a good edge requires the addition of
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
to make steel. By heating thin iron rods in a carbon-rich forge, carbon could be added to the surface, making a thin layer of steel on the surface through a process called
carburization Carburising, carburizing (chiefly American English), or carburisation is a heat treatment process in which iron or steel absorbs carbon while the metal is heated in the presence of a carbon-bearing material, such as charcoal or carbon monoxide. ...
(see also
case hardening Case-hardening or surface hardening is the process of hardening the surface of a metal object while allowing the metal deeper underneath to remain soft, thus forming a thin layer of harder metal at the surface. For iron or steel with low carbon ...
). From the beginning of the Iron Age, around 1200 BC, piled steel was the only way to get good steel. Obtaining the right level of carbon was an art, and was very important to the finished product. Too much carbon, or too many of the wrong trace elements, and the resulting steel becomes too hard and brittle, which can result in a catastrophic failure of a sword; too little carbon and the sword will not hold an edge. The ideal sword is one with a hard, sharp edge, and tough enough to bend, but not to shatter. Blending a number of different pieces of iron and steel together averaged out the properties, ensuring that one bad piece would not produce a total failure of the finished product. This laminating different alloys together produces patterns that, with proper treatment, can be seen in the surface of the finished blade, and this forms the basis for pattern welding.


Other uses of laminated steel

Since producing high carbon steel from wrought iron was very difficult, careful lamination of different alloys also served to conserve this difficult-to-make steel by using it only for the parts of the blades where it was needed. Many swords were made with the minimum possible amount of high carbon steel along the cutting edge, with the rest of the blade being made of low carbon steel or wrought iron. A thin strip of high carbon steel could be
laminate Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materia ...
d between two layers of softer steel, or a core of soft steel could be wrapped in high carbon steel. The Japanese
katana A is a Japanese sword characterized by a curved, single-edged blade with a circular or squared guard and long grip to accommodate two hands. Developed later than the ''tachi'', it was used by samurai in feudal Japan and worn with the edge ...
was often found with complex patterns of soft and hard steels; having 5 sections of differing hardness welded together to form the final blade was not uncommon. The end result would be a blade with a very high carbon edge (as much as 1.0%, equal to the highest carbon content found in low alloy steels in use today) and a softer spine. The very hard, but brittle, edge made the swords stay extremely sharp, while the spine gave the blade flexibility, so that it would bend rather than break. Many laminated steel blades, particularly those of the
Viking Vikings ; non, víkingr is the modern name given to seafaring people originally from Scandinavia (present-day Denmark, Norway and Sweden), who from the late 8th to the late 11th centuries raided, pirated, traded and se ...
s, also used complex structures of steel to produce
patterns A pattern is a regularity in the world, in human-made design, or in abstract ideas. As such, the elements of a pattern repeat in a predictable manner. A geometric pattern is a kind of pattern formed of geometric shapes and typically repeated li ...
in the surface of the steel. These patterns were made by manipulating the piles, by twisting or otherwise distorting the piles, before they were forged into the blade.


Modern use of laminate steel

Modern laminated steel is still found in specialty knives and cutting tools, constructed of multiple alloys of steel to provide specific properties at different areas of the blade.
Pattern welding Pattern welding is the practice in sword and knife making of forming a blade of several metal pieces of differing composition that are forge welding, forge-welded together and twisted and manipulated to form a pattern. Often mistakenly called Dam ...
is common in hand-made knives, where the primary goal is to provide a visually striking pattern in the final etched blade.


See also

*'' Mokume-gane'' *
Damascus steel Damascus steel was the forged steel of the blades of swords smithed in the Near East from ingots of Wootz steel either imported from Southern India or made in production centres in Sri Lanka, or Khorasan, Iran. These swords are characterized by ...
*
Japanese swordsmithing Japanese swordsmithing is the labour-intensive bladesmithing process developed in Japan for forging traditionally made bladed weapons ( ''nihonto'') including ''katana'', '' wakizashi'', ''tantō'', '' yari'', ''naginata'', '' nagamaki'', ''tachi' ...
* Toledo steel


References

{{reflist Steel Blade weapons Cutting tools