History
Early electrical communications started to sample signals in order to multiplex samples from multiple telegraphy sources and to convey them over a single telegraph cable. The American inventor Moses G. Farmer conceived telegraph time-division multiplexing (TDM) as early as 1853. Electrical engineer W. M. Miner, in 1903, used an electro-mechanical commutator for time-division multiplexing multiple telegraph signals; he also applied this technology to telephony. He obtained intelligible speech from channels sampled at a rate above 3500–4300 Hz; lower rates proved unsatisfactory. In 1920, the Bartlane cable picture transmission system used telegraph signaling of characters punched in paper tape to send samples of images quantized to 5 levels. In 1926, Paul M. Rainey of Western Electric patented a facsimile machine that transmitted its signal using 5-bit PCM, encoded by an opto-mechanical analog-to-digital converter. The machine did not go into production. British engineer Alec Reeves, unaware of previous work, conceived the use of PCM for voice communication in 1937 while working for International Telephone and Telegraph in France. He described the theory and its advantages, but no practical application resulted. Reeves filed for a French patent in 1938, and his US patent was granted in 1943. By this time Reeves had started working at the Telecommunications Research Establishment. The first transmission ofDigital audio recordings
In 1967, the first PCM recorder was developed by NHK's research facilities in Japan. The 30 kHz 12-bit device used a compander (similar to DBX Noise Reduction) to extend the dynamic range, and stored the signals on a video tape recorder. In 1969, NHK expanded the system's capabilities to 2-channel stereo and 32 kHz 13-bit resolution. In January 1971, using NHK's PCM recording system, engineers at Denon recorded the first commercial digital recordings.Among the first recordings was ''Uzu: The World Of Stomu Yamash'ta 2'' by Stomu Yamashta. In 1972, Denon unveiled the first 8-channel digital recorder, the DN-023R, which used a 4-head open reel broadcast video tape recorder to record in 47.25 kHz, 13-bit PCM audio.The first recording with this new system was recorded in Tokyo during April 24–26, 1972. In 1977, Denon developed the portable PCM recording system, the DN-034R. Like the DN-023R, it recorded 8 channels at 47.25 kHz, but it used 14-bits "with emphasis, making it equivalent to 15.5 bits." In 1979, the first digital pop album, Bop till You Drop, was recorded. It was recorded in 50 kHz, 16-bit linear PCM using a 3M digital tape recorder. The compact disc (CD) brought PCM to consumer audio applications with its introduction in 1982. The CD uses a 44,100 Hz sampling frequency and 16-bit resolution and stores up to 80 minutes of stereo audio per disc.Digital telephony
The rapid development and wide adoption of PCM digital telephony was enabled by metal–oxide–semiconductor (MOS) switched capacitor (SC) circuit technology, developed in the early 1970s. This led to the development of PCM codec-filter chips in the late 1970s. The silicon-gate CMOS (complementary MOS) PCM codec-filter chip, developed by David A. Hodges and W.C. Black in 1980, has since been the industry standard for digital telephony. By the 1990s, telecommunication networks such as the public switched telephone network (PSTN) had been largely digitized with very-large-scale integration (VLSI) CMOS PCM codec-filters, widely used in electronic switching systems for telephone exchanges, user-end modems and a wide range of digital transmission applications such as the integrated services digital network (ISDN), cordless telephones and cell phones.Implementations
PCM is the method of encoding typically used for uncompressed digital audio.Other methods exist such as pulse-density modulation used also on Super Audio CD. * The 4ESS switch introduced time-division switching into the US telephone system in 1976, based on medium scale integrated circuit technology. * LPCM is used for the lossless encoding of audio data in the compact disc Red Book standard (informally also known as ''Audio CD''), introduced in 1982. * AES3 (specified in 1985, upon which S/PDIF is based) is a particular format using LPCM. * LaserDiscs with digital sound have an LPCM track on the digital channel. * On PCs, PCM and LPCM often refer to the format used in WAV (defined in 1991) and AIFF audio container formats (defined in 1988). LPCM data may also be stored in other formats such as AU, raw audio format (header-less file) and various multimedia container formats. * LPCM has been defined as a part of the DVD (since 1995) andModulation
Demodulation
The electronics involved in producing an accurate analog signal from the discrete data are similar to those used for generating the digital signal. These devices are digital-to-analog converters (DACs). They produce a voltage or current (depending on type) that represents the value presented on their digital inputs. This output would then generally be filtered and amplified for use. To recover the original signal from the sampled data, a ''demodulator'' can apply the procedure of modulation in reverse. After each sampling period, the demodulator reads the next value and transitions the output signal to the new value. As a result of these transitions, the signal retains a significant amount of high-frequency energy due to imaging effects. To remove these undesirable frequencies, the demodulator passes the signal through a reconstruction filter that suppresses energy outside the expected frequency range (greater than the Nyquist frequency ).Some systems use digital filtering to remove some of the aliasing, converting the signal from digital to analog at a higher sample rate such that the analog anti-aliasing filter is much simpler. In some systems, no explicit filtering is done at all; as it is impossible for any system to reproduce a signal with infinite bandwidth, inherent losses in the system compensate for the artifacts — or the system simply does not require much precision.Standard sampling precision and rates
Common sample depths for LPCM are 8, 16, 20 or 24 bits per sample. LPCM encodes a single sound channel. Support for multichannel audio depends on file format and relies on synchronization of multiple LPCM streams. While two channels (stereo) is the most common format, systems can support up to 8 audio channels (7.1 surround) or more. Common sampling frequencies are 48 kHz as used with DVD format videos, or 44.1 kHz as used in CDs. Sampling frequencies of 96 kHz or 192 kHz can be used on some equipment, but the benefits have been debated.Limitations
The Nyquist–Shannon sampling theorem shows PCM devices can operate without introducing distortions within their designed frequency bands if they provide a sampling frequency at least twice that of the highest frequency contained in the input signal. For example, in telephony, the usable voice frequency band ranges from approximately 300 Hz to 3400 Hz. For effective reconstruction of the voice signal, telephony applications therefore typically use an 8000 Hz sampling frequency which is more than twice the highest usable voice frequency. Regardless, there are potential sources of impairment implicit in any PCM system: * Choosing a discrete value that is near but not exactly at the analog signal level for each sample leads to quantization error.Quantization error swings between -''q''/2 and ''q''/2. In the ideal case (with a fully linear ADC and signal level >> ''q'') it is uniformly distributed over this interval, with zero mean and variance of ''q''2/12. * Between samples no measurement of the signal is made; the sampling theorem guarantees non-ambiguous representation and recovery of the signal only if it has no energy at frequency ''fs''/2 or higher (one half the sampling frequency, known as the Nyquist frequency); higher frequencies will not be correctly represented or recovered and add aliasing distortion to the signal below the Nyquist frequency. * As samples are dependent on time, an accurate clock is required for accurate reproduction. If either the encoding or decoding clock is not stable, these imperfections will directly affect the output quality of the device.A slight difference between the encoding and decoding clock frequencies is not generally a major concern; a small constant error is not noticeable. Clock error does become a major issue if the clock contains significant jitter, however.Processing and coding
Some forms of PCM combine signal processing with coding. Older versions of these systems applied the processing in the analog domain as part of the analog-to-digital process; newer implementations do so in the digital domain. These simple techniques have been largely rendered obsolete by modern transform-based audio compression techniques, such as modified discrete cosine transform (MDCT) coding. * Linear PCM (LPCM) is PCM with linear quantization. * Differential PCM (DPCM) encodes the PCM values as differences between the current and the predicted value. An algorithm predicts the next sample based on the previous samples, and the encoder stores only the difference between this prediction and the actual value. If the prediction is reasonable, fewer bits can be used to represent the same information. For audio, this type of encoding reduces the number of bits required per sample by about 25% compared to PCM. * Adaptive differential pulse-code modulation (ADPCM) is a variant of DPCM that varies the size of the quantization step, to allow further reduction of the required bandwidth for a given signal-to-noise ratio. * Delta modulation is a form of DPCM that uses one bit per sample to indicate whether the signal is increasing or decreasing compared to the previous sample. In telephony, a standard audio signal for a single phone call is encoded as 8,000 samples per second, of 8 bits each, giving a 64 kbit/s digital signal known as DS0. The default signal compression encoding on a DS0 is either μ-law (mu-law) PCM (North America and Japan) or A-law PCM (Europe and most of the rest of the world). These are logarithmic compression systems where a 12- or 13-bit linear PCM sample number is mapped into an 8-bit value. This system is described by international standard G.711. Where circuit costs are high and loss of voice quality is acceptable, it sometimes makes sense to compress the voice signal even further. An ADPCM algorithm is used to map a series of 8-bit μ-law or A-law PCM samples into a series of 4-bit ADPCM samples. In this way, the capacity of the line is doubled. The technique is detailed in the G.726 standard. Audio coding formats and audio codecs have been developed to achieve further compression. Some of these techniques have been standardized and patented. Advanced compression techniques, such as modified discrete cosine transform (MDCT) and linear predictive coding (LPC), are now widely used in mobile phones, voice over IP (VoIP) andEncoding for serial transmission
PCM can be either return-to-zero (RZ) or non-return-to-zero (NRZ). For a NRZ system to be synchronized using in-band information, there must not be long sequences of identical symbols, such as ones or zeroes. For binary PCM systems, the density of 1-symbols is called ''ones-density''.Stallings, WilliamNomenclature
The word ''pulse'' in the term ''pulse-code modulation'' refers to the pulses to be found in the transmission line. This perhaps is a natural consequence of this technique having evolved alongside two analog methods, pulse-width modulation and pulse-position modulation, in which the information to be encoded is represented by discrete signal pulses of varying width or position, respectively. In this respect, PCM bears little resemblance to these other forms of signal encoding, except that all can be used in time-division multiplexing, and the numbers of the PCM codes are represented as electrical pulses.See also
* Beta encoder * Equivalent pulse code modulation noise * Signal-to-quantization-noise ratio (SQNR), one method of measuring quantization errorExplanatory notes
References
Further reading
* * * * *External links