HOME

TheInfoList



OR:

In
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic o ...
, it can be shown that every cyclotomic field is an abelian extension of the
rational number field In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
Q, having
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
of the form (\mathbb Z/n\mathbb Z)^\times. The Kronecker–Weber theorem provides a partial converse: every finite abelian extension of Q is contained within some cyclotomic field. In other words, every algebraic integer whose
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
is
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
can be expressed as a sum of roots of unity with rational coefficients. For example, :\sqrt = e^ - e^ - e^ + e^, \sqrt = e^ - e^, and \sqrt = e^ - e^. The theorem is named after
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, ...
and Heinrich Martin Weber.


Field-theoretic formulation

The Kronecker–Weber theorem can be stated in terms of fields and
field extension In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
s. Precisely, the Kronecker–Weber theorem states: every finite abelian extension of the rational numbers Q is a subfield of a cyclotomic field. That is, whenever an
algebraic number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
has a Galois group over Q that is an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
, the field is a subfield of a field obtained by adjoining a
root of unity In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important i ...
to the rational numbers. For a given abelian extension ''K'' of Q there is a ''minimal'' cyclotomic field that contains it. The theorem allows one to define the conductor of ''K'' as the smallest integer ''n'' such that ''K'' lies inside the field generated by the ''n''-th roots of unity. For example the quadratic fields have as conductor the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
of their
discriminant In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the orig ...
, a fact generalised in
class field theory In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is cre ...
.


History

The theorem was first stated by though his argument was not complete for extensions of degree a power of 2. published a proof, but this had some gaps and errors that were pointed out and corrected by . The first complete proof was given by .


Generalizations

proved the local Kronecker–Weber theorem which states that any abelian extension of a local field can be constructed using cyclotomic extensions and Lubin–Tate extensions. , and gave other proofs.
Hilbert's twelfth problem Kronecker's Jugendtraum or Hilbert's twelfth problem, of the 23 mathematical Hilbert problems, is the extension of the Kronecker–Weber theorem on abelian extensions of the rational numbers, to any base number field. That is, it asks for analog ...
asks for generalizations of the Kronecker–Weber theorem to base fields other than the rational numbers, and asks for the analogues of the roots of unity for those fields. A different approach to abelian extensions is given by
class field theory In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is cre ...
.


References

* * * * * * * * * * * * * * *


External links

{{DEFAULTSORT:Kronecker-Weber theorem Class field theory Cyclotomic fields Theorems in algebraic number theory