HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an embedding (or imbedding) is one instance of some
mathematical structure In mathematics, a structure on a set (or on some sets) refers to providing or endowing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the ...
contained within another instance, such as a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
that is a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
. When some object X is said to be embedded in another object Y, the embedding is given by some
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
and structure-preserving map f:X\rightarrow Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, a structure-preserving map is called a
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for
inclusion map In mathematics, if A is a subset of B, then the inclusion map is the function \iota that sends each element x of A to x, treated as an element of B: \iota : A\rightarrow B, \qquad \iota(x)=x. An inclusion map may also be referred to as an inclu ...
s.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s in the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, the integers in the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s, the rational numbers in the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, and the real numbers in the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. In such cases it is common to identify the domain X with its
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
f(X) contained in Y, so that X\subseteq Y.


Topology and geometry


General topology

In
general topology In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differ ...
, an embedding is a
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
onto its image. More explicitly, an injective continuous map f : X \to Y between
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s X and Y is a topological embedding if f yields a homeomorphism between X and f(X) (where f(X) carries the
subspace topology In topology and related areas of mathematics, a subspace of a topological space (''X'', ''𝜏'') is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''𝜏'' called the subspace topology (or the relative topology ...
inherited from Y). Intuitively then, the embedding f : X \to Y lets us treat X as a subspace of Y. Every embedding is injective and continuous. Every map that is injective, continuous and either
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gerd Dudek, Buschi Niebergall, and Edward Vesala album), 1979 * ''Open'' (Go ...
or closed is an embedding; however there are also embeddings that are neither open nor closed. The latter happens if the image f(X) is neither an
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
nor a
closed set In geometry, topology, and related branches of mathematics, a closed set is a Set (mathematics), set whose complement (set theory), complement is an open set. In a topological space, a closed set can be defined as a set which contains all its lim ...
in Y. For a given space Y, the existence of an embedding X \to Y is a
topological invariant In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
of X. This allows two spaces to be distinguished if one is able to be embedded in a space while the other is not.


Related definitions

If the domain of a function f : X \to Y is a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
then the function is said to be ' if there exists some
neighborhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
U of this point such that the restriction f\big\vert_U : U \to Y is injective. It is called ' if it is locally injective around every point of its domain. Similarly, a ' is a function for which every point in its domain has some neighborhood to which its restriction is a (topological, resp. smooth) embedding. Every injective function is locally injective but not conversely.
Local diffeomorphism In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below. Form ...
s,
local homeomorphism In mathematics, more specifically topology, a local homeomorphism is a function between topological spaces that, intuitively, preserves local (though not necessarily global) structure. If f : X \to Y is a local homeomorphism, X is said to be an � ...
s, and smooth
immersion Immersion may refer to: The arts * "Immersion", a 2012 story by Aliette de Bodard * ''Immersion'', a French comic book series by Léo Quievreux * ''Immersion'' (album), the third album by Australian group Pendulum * ''Immersion'' (film), a 2021 ...
s are all locally injective functions that are not necessarily injective. The
inverse function theorem In mathematics, the inverse function theorem is a theorem that asserts that, if a real function ''f'' has a continuous derivative near a point where its derivative is nonzero, then, near this point, ''f'' has an inverse function. The inverse fu ...
gives a sufficient condition for a continuously differentiable function to be (among other things) locally injective. Every
fiber Fiber (spelled fibre in British English; from ) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often inco ...
of a locally injective function f : X \to Y is necessarily a discrete subspace of its domain X.


Differential topology

In
differential topology In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
: Let M and N be smooth
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s and f:M\to N be a smooth map. Then f is called an
immersion Immersion may refer to: The arts * "Immersion", a 2012 story by Aliette de Bodard * ''Immersion'', a French comic book series by Léo Quievreux * ''Immersion'' (album), the third album by Australian group Pendulum * ''Immersion'' (film), a 2021 ...
if its
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
is everywhere injective. An embedding, or a smooth embedding, is defined to be an immersion that is an embedding in the topological sense mentioned above (i.e.
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
onto its image). In other words, the domain of an embedding is
diffeomorphic In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Defini ...
to its image, and in particular the image of an embedding must be a
submanifold In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly ...
. An immersion is precisely a local embedding, i.e. for any point x\in M there is a neighborhood x\in U\subset M such that f:U\to N is an embedding. When the domain manifold is compact, the notion of a smooth embedding is equivalent to that of an injective immersion. An important case is N = \mathbb^n. The interest here is in how large n must be for an embedding, in terms of the dimension m of M. The
Whitney embedding theorem In mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney: *The strong Whitney embedding theorem states that any smooth real - dimensional manifold (required also to be Hausdorf ...
states that n = 2m is enough, and is the best possible linear bound. For example, the
real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properti ...
\mathbb\mathrm^m of dimension m, where m is a power of two, requires n = 2m for an embedding. However, this does not apply to immersions; for instance, \mathbb\mathrm^2 can be immersed in \mathbb^3 as is explicitly shown by
Boy's surface In geometry, Boy's surface is an immersion of the real projective plane in three-dimensional space. It was discovered in 1901 by the German mathematician Werner Boy, who had been tasked by his doctoral thesis advisor David Hilbert to prove th ...
—which has self-intersections. The Roman surface fails to be an immersion as it contains cross-caps. An embedding is proper if it behaves well with respect to boundaries: one requires the map f: X \rightarrow Y to be such that *f(\partial X) = f(X) \cap \partial Y, and *f(X) is
transverse Transverse may refer to: *Transverse engine, an engine in which the crankshaft is oriented side-to-side relative to the wheels of the vehicle *Transverse flute, a flute that is held horizontally * Transverse force (or ''Euler force''), the tangen ...
to \partial Y in any point of f(\partial X). The first condition is equivalent to having f(\partial X) \subseteq \partial Y and f(X \setminus \partial X) \subseteq Y \setminus \partial Y. The second condition, roughly speaking, says that f(X) is not tangent to the boundary of Y.


Riemannian and pseudo-Riemannian geometry

In
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
and pseudo-Riemannian geometry: Let (M,g) and (N,h) be
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
s or more generally
pseudo-Riemannian manifold In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
s. An isometric embedding is a smooth embedding f:M\rightarrow N that preserves the (pseudo-)
metric Metric or metrical may refer to: Measuring * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics ...
in the sense that g is equal to the
pullback In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: ...
of h by f, i.e. g=f^h. Explicitly, for any two tangent vectors v,w\in T_x(M) we have :g(v,w)=h(df(v),df(w)). Analogously, isometric immersion is an immersion between (pseudo)-Riemannian manifolds that preserves the (pseudo)-Riemannian metrics. Equivalently, in Riemannian geometry, an isometric embedding (immersion) is a smooth embedding (immersion) that preserves length of
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
s (cf.
Nash embedding theorem The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedding, embedded into some Euclidean space. Isometry, Isometric means preserving the length of ever ...
).Nash J., ''The embedding problem for Riemannian manifolds,'' Ann. of Math. (2), 63 (1956), 20–63.


Algebra

In general, for an algebraic category C, an embedding between two C-algebraic structures X and Y is a C-morphism that is injective.


Field theory

In field theory, an embedding of a field E in a field F is a
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
. The kernel of \sigma is an ideal of E, which cannot be the whole field E, because of the condition . Furthermore, any field has as ideals only the zero ideal and the whole field itself (because if there is any non-zero field element in an ideal, it is invertible, showing the ideal is the whole field). Therefore, the kernel is 0, so any embedding of fields is a
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphis ...
. Hence, E is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to the subfield \sigma(E) of F. This justifies the name ''embedding'' for an arbitrary homomorphism of fields.


Universal algebra and model theory

If \sigma is a
signature A signature (; from , "to sign") is a depiction of someone's name, nickname, or even a simple "X" or other mark that a person writes on documents as a proof of identity and intent. Signatures are often, but not always, Handwriting, handwritt ...
and A,B are \sigma- structures (also called \sigma-algebras in
universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures in general, not specific types of algebraic structures. For instance, rather than considering groups or rings as the object of stud ...
or models in
model theory In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mat ...
), then a map h:A \to B is a \sigma-embedding exactly if all of the following hold: * h is injective, * for every n-ary function symbol f \in\sigma and a_1,\ldots,a_n \in A^n, we have h(f^A(a_1,\ldots,a_n))=f^B(h(a_1),\ldots,h(a_n)), * for every n-ary relation symbol R \in\sigma and a_1,\ldots,a_n \in A^n, we have A \models R(a_1,\ldots,a_n) iff B \models R(h(a_1),\ldots,h(a_n)). Here A\models R (a_1,\ldots,a_n) is a model theoretical notation equivalent to (a_1,\ldots,a_n)\in R^A. In model theory there is also a stronger notion of
elementary embedding In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one oft ...
.


Order theory and domain theory

In
order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intr ...
, an embedding of
partially ordered set In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
s is a function F between partially ordered sets X and Y such that :\forall x_1,x_2\in X: x_1\leq x_2 \iff F(x_1)\leq F(x_2). Injectivity of F follows quickly from this definition. In
domain theory Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer ...
, an additional requirement is that : \forall y\in Y:\ is
directed Direct may refer to: Mathematics * Directed set, in order theory * Direct limit of (pre), sheaves * Direct sum of modules, a construction in abstract algebra which combines several vector spaces Computing * Direct access (disambiguation), a ...
.


Metric spaces

A mapping \phi: X \to Y of
metric spaces In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are a general setting for ...
is called an ''embedding'' (with
distortion In signal processing, distortion is the alteration of the original shape (or other characteristic) of a signal. In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signal ...
C>0) if : L d_X(x, y) \leq d_Y(\phi(x), \phi(y)) \leq CLd_X(x,y) for every x,y\in X and some constant L>0.


Normed spaces

An important special case is that of normed spaces; in this case it is natural to consider linear embeddings. One of the basic questions that can be asked about a finite-dimensional
normed space The Ateliers et Chantiers de France (ACF, Workshops and Shipyards of France) was a major shipyard that was established in Dunkirk, France, in 1898. The shipyard boomed in the period before World War I (1914–18), but struggled in the inter-war p ...
(X, \, \cdot \, ) is, ''what is the maximal dimension k such that the
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
\ell_2^k can be linearly embedded into X with constant distortion?'' The answer is given by Dvoretzky's theorem.


Category theory

In
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, there is no satisfactory and generally accepted definition of embeddings that is applicable in all categories. One would expect that all isomorphisms and all compositions of embeddings are embeddings, and that all embeddings are monomorphisms. Other typical requirements are: any extremal monomorphism is an embedding and embeddings are stable under
pullback In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: ...
s. Ideally the class of all embedded
subobject In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory ...
s of a given object, up to isomorphism, should also be
small Small means of insignificant size Size in general is the Magnitude (mathematics), magnitude or dimensions of a thing. More specifically, ''geometrical size'' (or ''spatial size'') can refer to three geometrical measures: length, area, or ...
, and thus an
ordered set In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; ...
. In this case, the category is said to be well powered with respect to the class of embeddings. This allows defining new local structures in the category (such as a
closure operator In mathematics, a closure operator on a Set (mathematics), set ''S'' is a Function (mathematics), function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets ...
). In a
concrete category In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category). This functor makes it possible to think of the objects of the category as sets with additional ...
, an embedding is a morphism f:A\rightarrow B that is an injective function from the underlying set of A to the underlying set of B and is also an initial morphism in the following sense: If g is a function from the underlying set of an object C to the underlying set of A, and if its composition with f is a morphism fg:C\rightarrow B, then g itself is a morphism. A
factorization system In mathematics, it can be shown that every function can be written as the composite of a surjective function followed by an injective function. Factorization systems are a generalization of this situation in category theory. Definition A factori ...
for a category also gives rise to a notion of embedding. If (E,M) is a factorization system, then the morphisms in M may be regarded as the embeddings, especially when the category is well powered with respect to M. Concrete theories often have a factorization system in which M consists of the embeddings in the previous sense. This is the case of the majority of the examples given in this article. As usual in category theory, there is a dual concept, known as quotient. All the preceding properties can be dualized. An embedding can also refer to an embedding functor.


See also

*
Embedding (machine learning) Embedding in machine learning refers to a representation learning technique that maps complex, high-dimensional data into a lower-dimensional vector space of numerical vectors. It also denotes the resulting representation, where meaningful patterns ...
* Ambient space * Closed immersion * Cover *
Dimensionality reduction Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally ...
*
Flat (geometry) In geometry, a flat is an affine subspace, i.e. a subset of an affine space that is itself an affine space. Particularly, in the case the parent space is Euclidean, a flat is a Euclidean subspace which inherits the notion of distance from it ...
*
Immersion Immersion may refer to: The arts * "Immersion", a 2012 story by Aliette de Bodard * ''Immersion'', a French comic book series by Léo Quievreux * ''Immersion'' (album), the third album by Australian group Pendulum * ''Immersion'' (film), a 2021 ...
* Johnson–Lindenstrauss lemma *
Submanifold In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly ...
* Subspace * Universal space


Notes


References

* * * * * * * * * * * * . * * .


External links

*
Embedding of manifolds
on the Manifold Atlas {{set index article Abstract algebra Category theory General topology Differential topology Functions and mappings Maps of manifolds Model theory Order theory