HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, especially in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
, an induced homomorphism is a
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
derived in a canonical way from another map. For example, a
continuous map In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
from a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
''X'' to a topological space ''Y'' induces a
group homomorphism In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) whe ...
from the
fundamental group In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
of ''X'' to the fundamental group of ''Y''. More generally, in
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, any
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
by definition provides an induced morphism in the target
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
for each
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
in the source category. For example,
fundamental group In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
s, higher
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homo ...
s,
singular homology In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension n, the n-dimensional ...
, and
De Rham cohomology In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapte ...
are algebraic structures that are ''functorial'', meaning that their definition provides a functor from (e.g.) the
category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again con ...
to (e.g.) the
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories The ...
or rings. This means that each space is associated with an algebraic structure, while each continuous map between spaces is associated with a structure-preserving map between structures, called an induced homomorphism. A homomorphism induced from a map h is often denoted h_*. Induced homomorphisms often inherit properties of the maps they come from; for example, two maps that are inverse to each other
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...
homotopy In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. ...
induce homomorphisms that are inverse to each other. A common use of induced homomorphisms is the following: by showing that a homomorphism with certain properties cannot exist, one concludes that there cannot exist a continuous map with properties that would induce it. Thanks to this, relations between spaces and continuous maps, often very intricate, can be inferred from relations between the homomorphisms they induce. The latter may be simpler to analyze, since they involve algebraic structures which can be often easily described, compared, and calculated in.


In fundamental groups

Let ''X'' and ''Y'' be
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s with points ''x''0 in ''X'' and ''y''0 in ''Y''. Let ''h'' : ''X→Y'' be a
continuous map In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
such that . Then we can define a map h_* from the fundamental group to the fundamental group as follows: any element of , represented by a loop ''f'' in ''X'' based at ''x''0, is mapped to the loop in obtained by composing with ''h'': : h_*( := \circ f/math> Here 'f''denotes the
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
of ''f'' under homotopy, as in the definition of the fundamental group. It is easily checked from the definitions that h_* is a well-defined function → : loops in the same equivalence class, i.e. homotopic loops in ''X'', are mapped to homotopic loops in ''Y'', because a homotopy can be composed with ''h'' as well. It also follows from the definition of the group operation in fundamental groups (namely by concatenation of loops) that h_* is a group homomorphism: : h_*( + g = h_*( + h_*( (where ''+'' denotes concatenation of loops, with the first ''+'' in ''X'' and the second ''+'' in ''Y''). pg. 197, Proposition 7.24. The resulting homomorphism h_* is the homomorphism ''induced'' from ''h''. It may also be denoted as (''h''). Indeed, gives a functor from the category of pointed spaces to the category of groups: it associates the fundamental group to each pointed space and it associates the induced homomorphism \pi(h)=h_* to each preserving continuous map ''h'':  → . To prove it satisfies the definition of a functor, one has to further check that it is compatible with composition: for preserving continuous maps ''h'':  → and ''k'':  → , we have: : \pi(k \circ h) = \pi(k) \circ \pi(h). This implies that if ''h'' is not only a continuous map but in fact a
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
between ''X'' and ''Y'', then the induced homomorphism \pi(h) is an ''
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
'' between fundamental groups (because the homomorphism induced by the inverse of ''h'' is the inverse of \pi(h), by the above equation). (See section III.5.4, p. 201, in H. Schubert.)


Applications

1. The
torus In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses inclu ...
is not homeomorphic to R2 because their fundamental groups are not isomorphic (since their fundamental groups don’t have the same
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
). More generally, a
simply connected space In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed into any other such path while preserving the two endpoi ...
cannot be homeomorphic to a non-simply-connected space; one has a trivial fundamental group and the other does not. 2. The fundamental group of the
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
is isomorphic to the group of
integers An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
. Therefore, the one-point compactification of R has a fundamental group isomorphic to the group of integers (since the one-point compactification of R is homeomorphic to the circle). This also shows that the one-point compactification of a simply connected space need not be simply connected. 3. The converse of the theorem need not hold. For example, R2 and R3 have isomorphic fundamental groups but are still not homeomorphic. Their fundamental groups are isomorphic because each space is simply connected. However, the two spaces cannot be homeomorphic because deleting a point from R2 leaves a non-simply-connected space but deleting a point from R3 leaves a simply connected space (If we delete a line lying in R3, the space wouldn’t be simply connected any more. In fact this generalizes to R''n'' whereby deleting a - dimensional subspace from R''n'' leaves a non-simply-connected space). 4. If ''A'' is a strong deformation retract of a topological space ''X'', then the
inclusion map In mathematics, if A is a subset of B, then the inclusion map is the function \iota that sends each element x of A to x, treated as an element of B: \iota : A\rightarrow B, \qquad \iota(x)=x. An inclusion map may also be referred to as an inclu ...
from ''A'' to ''X'' induces an isomorphism between fundamental groups (so the fundamental group of ''X'' can be described using only loops in the subspace ''A'').


Other examples

Likewise there are induced homomorphisms of higher
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homo ...
s and
homology group In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian grou ...
s. Any
homology theory In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian grou ...
comes with induced homomorphisms. For instance, simplicial homology,
singular homology In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension n, the n-dimensional ...
, and Borel–Moore homology all have induced homomorphisms (IV.1.3, pp. 240–241) Similarly, any
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
comes induced homomorphisms, though in the opposite direction (from a group associated with ''Y'' to a group associated with ''X''). For instance,
ÄŒech cohomology In mathematics, specifically algebraic topology, ÄŒech cohomology is a cohomology theory based on the intersection properties of open set, open cover (topology), covers of a topological space. It is named for the mathematician Eduard ÄŒech. Moti ...
,
de Rham cohomology In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapte ...
, and
singular cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
all have induced homomorphisms (IV.4.2–3, pp. 298–299). Generalizations such as
cobordism In mathematics, cobordism is a fundamental equivalence relation on the class of compact space, compact manifolds of the same dimension, set up using the concept of the boundary (topology), boundary (French ''wikt:bord#French, bord'', giving ''cob ...
also have induced homomorphisms.


General definition

Given some
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
\mathbf of topological spaces (possibly with some additional structure) such as the category of all topological spaces Top or the category of pointed topological spaces (that is, topological spaces with a distinguished base point), and a
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
F: \mathbf \to \mathbf from that category into some category \mathbf of algebraic structures such as the category of groups Grp or of
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s Ab which then associates such an algebraic structure to every topological space, then for every
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
f: X \to Y of \mathbf (which is usually a continuous map, possibly preserving some other structure such as the base point) this functor induces an ''induced morphism'' F(f): F(X) \to F(Y) in \mathbf (which for example is a group homomorphism if \mathbf is a category of groups) between the algebraic structures F(X) and F(Y) associated to X and Y, respectively. If F is not a (covariant) functor but a
contravariant functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ...
then by definition it induces morphisms in the opposite direction: F(f): F(Y) \to F(X).
Cohomology group In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
s give an example.


References

* James Munkres (1999). Topology, 2nd edition, Prentice Hall. {{ISBN, 0-13-181629-2. Algebraic topology Category theory