Huygens Principle Of Double Refraction
   HOME

TheInfoList



OR:

Huygens principle of double refraction, named after
Dutch Dutch or Nederlands commonly refers to: * Something of, from, or related to the Netherlands ** Dutch people as an ethnic group () ** Dutch nationality law, history and regulations of Dutch citizenship () ** Dutch language () * In specific terms, i ...
physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate cau ...
Christiaan Huygens Christiaan Huygens, Halen, Lord of Zeelhem, ( , ; ; also spelled Huyghens; ; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution ...
, explains the phenomenon of
double refraction Birefringence, also called double refraction, is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefring ...
observed in uniaxial anisotropic material such as
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
. When
unpolarized light Unpolarized light is light with a random, time-varying polarization. Natural light, like most other common sources of visible light, is produced independently by a large number of atoms or molecules whose emissions are uncorrelated. Unpolarized ...
propagates in such materials (along a direction different from the
optical axis An optical axis is an imaginary line that passes through the geometrical center of an optical system such as a camera lens, microscope or telescopic sight. Lens elements often have rotational symmetry about the axis. The optical axis defines ...
), it splits into two different rays, known as
ordinary Ordinary or The Ordinary often refer to: Music * ''Ordinary'' (EP) (2015), by South Korean group Beast * ''Ordinary'' (album) (2011), by Every Little Thing * "Ordinary" (Alex Warren song) (2025) * "Ordinary" (Two Door Cinema Club song) (2016 ...
and
extraordinary Extraordinary may refer to: Music * "Extraordinary" (Clean Bandit song), 2014 * "Extraordinary" (Liz Phair song), 2004 * "Extraordinary" (Mandy Moore song), 2007 * "Extraordinary", a song by Idina Menzel from '' Idina'', 2016 * "Extraordinary", ...
rays. The principle states that every point on the
wavefront In physics, the wavefront of a time-varying ''wave field (physics), field'' is the set (locus (mathematics), locus) of all point (geometry), points having the same ''phase (waves), phase''. The term is generally meaningful only for fields that, a ...
of birefringent material produces two types of wavefronts or wavelets: spherical wavefronts and ellipsoidal wavefronts. These secondary wavelets, originating from different points, interact and interfere with each other. As a result, the new wavefront is formed by the superposition of these wavelets.


History

The systematic exploration of light
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
began during the 17th century. In 1669,
Rasmus Bartholin Rasmus Bartholin (; Latinized: ''Erasmus Bartholinus''; 13 August 1625 – 4 November 1698) was a Danish physician and grammarian. Biography Bartholin was born in Roskilde. He was the son of Caspar Bartholin the Elder (1585–1629) and Ann ...
made an observation of double refraction in a calcite crystal and documented it in a published work in 1670. Later, in 1690, Huygens identified polarization as a characteristic of light and provided a demonstration using two identical blocks of calcite placed in succession. Each crystal divided an incoming ray of light into two, which Huygens referred to as "regular" and "irregular" (in modern terminology:
ordinary Ordinary or The Ordinary often refer to: Music * ''Ordinary'' (EP) (2015), by South Korean group Beast * ''Ordinary'' (album) (2011), by Every Little Thing * "Ordinary" (Alex Warren song) (2025) * "Ordinary" (Two Door Cinema Club song) (2016 ...
and
extraordinary Extraordinary may refer to: Music * "Extraordinary" (Clean Bandit song), 2014 * "Extraordinary" (Liz Phair song), 2004 * "Extraordinary" (Mandy Moore song), 2007 * "Extraordinary", a song by Idina Menzel from '' Idina'', 2016 * "Extraordinary", ...
). However, if the two crystals were aligned in the same orientation, no further division of the light occurred.


Huygens–Fresnel principle

While the Huygens' principle of double refraction explains the phenomenon of double refraction in an optically anisotropic medium, the
Huygens–Fresnel principle The Huygens–Fresnel principle (named after Netherlands, Dutch physicist Christiaan Huygens and France, French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary w ...
pertains to the propagation of waves in an optically isotropic medium. According to the Huygens–Fresnel principle, each point on a wavefront can be considered a secondary point source of waves, so a new wavefront is formed after the secondary wavelets have traveled for a period equal to one vibration cycle. This new wavefront can be described as an envelope or tangent surface to these secondary wavelets. Understanding and forecasting the classical wave propagation of light is based on the Huygens-Fresnel principle.


Polarization of light

Electric Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s that are mutually perpendicular and fluctuating give rise to the
transverse Transverse may refer to: *Transverse engine, an engine in which the crankshaft is oriented side-to-side relative to the wheels of the vehicle *Transverse flute, a flute that is held horizontally * Transverse force (or ''Euler force''), the tangen ...
electromagnetic wave In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ...
known as light. Electric and magnetic fields are perpendicular to the propagation direction of the wave. For example, if the wave propagation is in the z-direction, both the electric field and the magnetic field lie in the xy-plane. The electric field points in a specific direction in space since it is a
vector Vector most often refers to: * Euclidean vector, a quantity with a magnitude and a direction * Disease vector, an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematics a ...
. The direction of an electromagnetic wave's electric field vector E is referred to as
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
. If the electric field oscillates in the x-direction, the polarization of the light will be linear, along the x-direction.


Plane wave equation of the light

The
electromagnetic wave equation The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous for ...
's sinusoidal solution has the following form:\begin \mathbf (\mathbf, t) &= \mathbf_0 \cos(\omega t - \mathbf \cdot \mathbf + \phi_0) \\ \mathbf (\mathbf, t) &= \mathbf_0 \cos(\omega t - \mathbf \cdot \mathbf + \phi_0) \endwhere * ' is time (in seconds), * ' is the
angular frequency In physics, angular frequency (symbol ''ω''), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine ...
(in radians per second), * \phi_0 is the phase angle constant (in rad), and * is the
wave vector In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength) ...
of the wave (in rad/m). The wave vector is related to the angular frequency and
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
' by k = , \mathbf , = = where ' is the
wavenumber In the physical sciences, the wavenumber (or wave number), also known as repetency, is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of ...
(the magnitude of the wave vector) and ' is the
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
.


Unpolarized light

If we were able to observe a light wave originating from an ordinary source and directed toward us, such as the light emitted by an
incandescent bulb An incandescent light bulb, also known as an incandescent lamp or incandescent light globe, is an electric light that produces illumination by Joule heating a filament until it glows. The filament is enclosed in a glass bulb that is either ...
, we would find that it consists of mixture of light waves. These waves exhibit electric field components that fluctuate at a rapid pace, nearly matching the optical frequency itself, with a time scale of approximately 10−14 seconds. Consequently, the direction of oscillation of the electric field vector occurs in all possible planes perpendicular to the direction of the light beam. Unpolarized light is a type of light wave where the electric field vector oscillates in multiple planes. Light emitted by the sun, incandescent lamps, or candle flames is considered to be unpolarized.


Types of polarization

The light wave
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
specifies the form and location of the electric field vector's direction at a particular point in space as a function of time (in the plane perpendicular to the propagation direction). There are three possible polarization states for light, depending on where the \mathbf vector's direction is located. The first is plane or
linear polarization In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. The term ''linear polarizati ...
, the second is
elliptical polarization In electrodynamics, elliptical polarization is the polarization of electromagnetic radiation such that the tip of the electric field vector describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation. An ell ...
, and the third is
circular polarization In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and is rotating at a constant rate in a plane perpendicular to ...
. The light may also be partially polarized in addition to these. The polarization of light cannot be determined by the human eye on its own. However, some animals and insects have a vision that is sensitive to polarization.


Plane linear polarized light

Light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
waves that exhibit oscillation in a single plane are referred to as plane-polarized light waves. In such waves, the electric field vector (E) oscillates exclusively within a single plane that is perpendicular to the direction of wave propagation. This type of wave is also called a linearly polarized wave since the orientation of the field vector at any given point in space and time lies along a line within a plane perpendicular to the wave's direction of propagation.


Isotropic and anisotropic materials

Materials can be classified into two categories based on their isotropy. Materials that are
isotropic In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also ...
have the same physical characteristics throughout. In other words, regardless of the direction in which they are measured, their characteristics, such as optical, electrical, and mechanical, stay constant. Gases, liquids, and
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
solids like
glass Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
are instances of isotropic materials. On the other hand,
anisotropic Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ver ...
materials show various physical characteristics depending on the direction of measurement. Their characteristics are not constant throughout the substance. Crystal structure, molecule orientation, or the presence of preferred axes can all be causes of anisotropy. Crystals, certain
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s, calcite, and numerous minerals are typical examples of anisotropic materials. The physical characteristics of anisotropic materials, such as
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
,
electrical conductivity Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity in ...
, and mechanical qualities, can differ depending on the direction of measurement.


Optical axis and types of anisotropic materials

A frequent notion in the study of anisotropic materials, particularly in the context of
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
, is the
optical axis An optical axis is an imaginary line that passes through the geometrical center of an optical system such as a camera lens, microscope or telescopic sight. Lens elements often have rotational symmetry about the axis. The optical axis defines ...
. It refers to a particular axis within the material along which certain optical characteristics remain unaltered. To put it in another way, the light that travels along the optical axis does not experience anisotropic behaviours on the transverse plane. It is possible to further divide anisotropic materials into two categories: uniaxial anisotropic and biaxial anisotropic materials. One optical axis, also referred to as the extraordinary axis, exists in uniaxially anisotropic materials. In these materials, light propagating along the optical axis experience the same effects independently of the polarization. The optical plane, also known as the
plane of polarization For light and other electromagnetic radiation, the plane of polarization is the plane (geometry), plane spanned by the direction of propagation and either the electric vector or the magnetic vector, depending on the convention. It can be defined ...
, is perpendicular to the
optical axis An optical axis is an imaginary line that passes through the geometrical center of an optical system such as a camera lens, microscope or telescopic sight. Lens elements often have rotational symmetry about the axis. The optical axis defines ...
. Light exhibits
birefringence Birefringence, also called double refraction, is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefrin ...
within this plane, which means that the refractive index and all the phenomena associated to that, depend on the polarization. A common effect that can be observed is the splitting of an incident ray into two rays when propagating in a birefringent medium. Due to the presence of two independent optical axes in biaxial anisotropic materials, light travelling in two different directions will experience different optical characteristics.


Positive and negative uniaxial material

There are two types of uniaxial material depending on the value of
index of refraction In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
for the e-ray and o-ray. When the value of the refractive index of the e-ray (ne) is larger than the index of refraction index of the o-ray(n0), the material is positive uniaxial. On the other hand, when the value of refractive index of the e-ray (ne) is less than index of refraction index of the o-ray (n0), the material is negative uniaxial material.
Ice Ice is water that is frozen into a solid state, typically forming at or below temperatures of 0 ° C, 32 ° F, or 273.15 K. It occurs naturally on Earth, on other planets, in Oort cloud objects, and as interstellar ice. As a naturally oc ...
and
quartz Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The Atom, atoms are linked in a continuous framework of SiO4 silicon–oxygen Tetrahedral molecular geometry, tetrahedra, with each oxygen being shared between two tet ...
are examples for positive uniaxial material. Calcite and
tourmaline Tourmaline ( ) is a crystalline silicate mineral, silicate mineral group in which boron is chemical compound, compounded with chemical element, elements such as aluminium, iron, magnesium, sodium, lithium, or potassium. This gemstone comes in a ...
are examples of negative uniaxial materials.


Huygens' explanation of double refraction

The ordinary ray ( o-ray) has a spherical wavefront because the o-ray has a constant
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
(n0) independent of propagation direction inside the uniaxial material and the same velocity in all directions. On the other hand, the
extraordinary ray Birefringence, also called double refraction, is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefring ...
(E-ray) has an ellipsoidal wavefront due to its refractive index, which varies with the propagation direction within the uniaxial material, leading to different velocities in different directions. The two wavefronts come into contact at the points where they intersect with the optical axis. When unpolarized light incidents on the
birefringent Birefringence, also called double refraction, is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefring ...
material, the o-ray and e-ray will generate new wavefronts. The new wavefront for the o-ray will be tangent to the spherical wavelets, while the new wavefront for the e-ray will be tangent to the ellipsoidal wavelets. Each plane wavefront propagates straight ahead but with different velocities: V0 for the o-ray and Ve for the e-ray. The direction of the k-vector is always perpendicular to the wavefronts and is calculated from Snell's law. For normal incidence, the o-ray and e-ray having the same k-vector direction. However, the
Poynting vector In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or '' power flow'' of an electromagnetic field. The SI unit of the Poynting vector is the wat ...
, describing the direction of propagation of optical power, is different for the two rays. The power direction for each ray is determined by connecting the line from the imaginary source on the old wavefront to the intersection point between the new wavefront and the spherical or ellipsoidal wavefront. As a result, the o-ray and e-ray will propagate in different directions with different velocities inside the material. For the e-ray, the angle between the k-vector and the power direction is called
walk-off angle Walk-off may refer to: * Walk-off home run, in baseball * Walk-off touchdown, in gridiron football * Walkout, a political or economic protest ** Cummeragunja walk-off, by Aboriginal people in New South Wales, 1939 ** Wave Hill walk-off, by Gurind ...
. When a light travels through the crystal, these two wave surfaces follow distinct paths within the crystal. Eventually, two refracted rays emerge as a result of this propagation.


See also

*
Double refraction Birefringence, also called double refraction, is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefring ...
*
Electromagnetic wave equation The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous for ...
*
Huygens–Fresnel principle The Huygens–Fresnel principle (named after Netherlands, Dutch physicist Christiaan Huygens and France, French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary w ...
*
Isotropy In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also u ...
*
Polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
*
Poynting vector In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or '' power flow'' of an electromagnetic field. The SI unit of the Poynting vector is the wat ...
*
Wave vector In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength) ...


References


External links

* * {{Cite journal , title=Paper : Huygens's principle and rays in uniaxial anisotropic media , journal= Journal of the Optical Society of America A , date=August 2002 , volume=19 , issue=8 , pages=1668–1673 , doi=10.1364/JOSAA.19.001668 , url=https://opg.optica.org/josaa/abstract.cfm?uri=josaa-19-8-1668 , last1=Avendaño-Alejo , first1=Maximino , last2=Stavroudis , first2=Orestes N. , last3=Boyain y Goitia , first3=A. R. , pmid=12152707 , url-access=subscription Refraction Optics Polarization (waves)