HOME

TheInfoList



OR:

In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
, an eigenvector ( ) or characteristic vector is a
vector Vector most often refers to: * Euclidean vector, a quantity with a magnitude and a direction * Disease vector, an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematics a ...
that has its direction unchanged (or reversed) by a given
linear transformation In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
number). Geometrically, vectors are multi-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
al quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. The eigenvectors and eigenvalues of a linear transformation serve to characterize it, and so they play important roles in all areas where linear algebra is applied, from
geology Geology (). is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth ...
to
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
. In particular, it is often the case that a system is represented by a linear transformation whose outputs are fed as inputs to the same transformation (
feedback Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause and effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handle ...
). In such an application, the largest eigenvalue is of particular importance, because it governs the long-term behavior of the system after many applications of the linear transformation, and the associated eigenvector is the steady state of the system.


Matrices

For an nn matrix and a nonzero vector \mathbf of length n, if multiplying by \mathbf (denoted A\mathbf) simply scales \mathbf by a factor , where is a scalar, then \mathbf is called an eigenvector of , and is the corresponding eigenvalue. This relationship can be expressed as: A\mathbf = \lambda \mathbf. Given an ''n''-dimensional vector space and a choice of basis, there is a direct correspondence between linear transformations from the vector space into itself and ''n''-by-''n'' square matrices. Hence, in a finite-dimensional vector space, it is equivalent to define eigenvalues and eigenvectors using either the language of linear transformations, or the language of matrices.


Overview

Eigenvalues and eigenvectors feature prominently in the analysis of linear transformations. The prefix '' eigen-'' is adopted from the German word ''
eigen Eigen may refer to: People with the given name *, Japanese sport shooter *, Japanese professional wrestler * Frauke Eigen (born 1969) German photographer, photojournalist and artist * Manfred Eigen (1927–2019), German biophysicist * Michael Ei ...
'' (
cognate In historical linguistics, cognates or lexical cognates are sets of words that have been inherited in direct descent from an etymological ancestor in a common parent language. Because language change can have radical effects on both the s ...
with the English word '' own'') for 'proper', 'characteristic', 'own'. Originally used to study principal axes of the rotational motion of rigid bodies, eigenvalues and eigenvectors have a wide range of applications, for example in stability analysis,
vibration analysis Vibration () is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the osci ...
,
atomic orbital In quantum mechanics, an atomic orbital () is a Function (mathematics), function describing the location and Matter wave, wave-like behavior of an electron in an atom. This function describes an electron's Charge density, charge distribution a ...
s, facial recognition, and matrix diagonalization. In essence, an eigenvector v of a linear transformation ''T'' is a nonzero vector that, when ''T'' is applied to it, does not change direction. Applying ''T'' to the eigenvector only scales the eigenvector by the scalar value ''λ'', called an eigenvalue. This condition can be written as the equation T(\mathbf) = \lambda \mathbf, referred to as the eigenvalue equation or eigenequation. In general, ''λ'' may be any scalar. For example, ''λ'' may be negative, in which case the eigenvector reverses direction as part of the scaling, or it may be zero or
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
. The example here, based on the
Mona Lisa The ''Mona Lisa'' is a half-length portrait painting by the Italian artist Leonardo da Vinci. Considered an archetypal masterpiece of the Italian Renaissance, it has been described as "the best known, the most visited, the most written about, ...
, provides a simple illustration. Each point on the painting can be represented as a vector pointing from the center of the painting to that point. The linear transformation in this example is called a
shear mapping In plane geometry, a shear mapping is an affine transformation that displaces each point in a fixed direction by an amount proportional to its signed distance function, signed distance from a given straight line, line parallel (geometry), paral ...
. Points in the top half are moved to the right, and points in the bottom half are moved to the left, proportional to how far they are from the horizontal axis that goes through the middle of the painting. The vectors pointing to each point in the original image are therefore tilted right or left, and made longer or shorter by the transformation. Points ''along'' the horizontal axis do not move at all when this transformation is applied. Therefore, any vector that points directly to the right or left with no vertical component is an eigenvector of this transformation, because the mapping does not change its direction. Moreover, these eigenvectors all have an eigenvalue equal to one, because the mapping does not change their length either. Linear transformations can take many different forms, mapping vectors in a variety of vector spaces, so the eigenvectors can also take many forms. For example, the linear transformation could be a
differential operator In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and retur ...
like \tfrac, in which case the eigenvectors are functions called
eigenfunction In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, th ...
s that are scaled by that differential operator, such as \frace^ = \lambda e^. Alternatively, the linear transformation could take the form of an ''n'' by ''n'' matrix, in which case the eigenvectors are ''n'' by 1 matrices. If the linear transformation is expressed in the form of an ''n'' by ''n'' matrix ''A'', then the eigenvalue equation for a linear transformation above can be rewritten as the matrix multiplication A\mathbf v = \lambda \mathbf v, where the eigenvector ''v'' is an ''n'' by 1 matrix. For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it. Eigenvalues and eigenvectors give rise to many closely related mathematical concepts, and the prefix ''eigen-'' is applied liberally when naming them: * The set of all eigenvectors of a linear transformation, each paired with its corresponding eigenvalue, is called the eigensystem of that transformation. * The set of all eigenvectors of ''T'' corresponding to the same eigenvalue, together with the zero vector, is called an eigenspace, or the characteristic space of ''T'' associated with that eigenvalue. * If a set of eigenvectors of ''T'' forms a basis of the domain of ''T'', then this basis is called an eigenbasis.


History

Eigenvalues are often introduced in the context of
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
or
matrix theory In mathematics, a matrix (: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object. ...
. Historically, however, they arose in the study of
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong t ...
s and differential equations. In the 18th century,
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
studied the rotational motion of a
rigid body In physics, a rigid body, also known as a rigid object, is a solid body in which deformation is zero or negligible, when a deforming pressure or deforming force is applied on it. The distance between any two given points on a rigid body rema ...
, and discovered the importance of the principal axes.
Joseph-Louis Lagrange Joseph-Louis Lagrange (born Giuseppe Luigi LagrangiaAugustin-Louis Cauchy Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real a ...
saw how their work could be used to classify the quadric surfaces, and generalized it to arbitrary dimensions. Cauchy also coined the term ''racine caractéristique'' (characteristic root), for what is now called ''eigenvalue''; his term survives in '' characteristic equation''. Later,
Joseph Fourier Jean-Baptiste Joseph Fourier (; ; 21 March 1768 – 16 May 1830) was a French mathematician and physicist born in Auxerre, Burgundy and best known for initiating the investigation of Fourier series, which eventually developed into Fourier analys ...
used the work of Lagrange and
Pierre-Simon Laplace Pierre-Simon, Marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French polymath, a scholar whose work has been instrumental in the fields of physics, astronomy, mathematics, engineering, statistics, and philosophy. He summariz ...
to solve the
heat equation In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quanti ...
by
separation of variables In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary differential equation, ordinary and partial differential equations, in which algebra allows one to rewrite an equation so tha ...
in his 1822 treatise '' The Analytic Theory of Heat (Théorie analytique de la chaleur)''. Charles-François Sturm elaborated on Fourier's ideas further, and brought them to the attention of Cauchy, who combined them with his own ideas and arrived at the fact that real symmetric matrices have real eigenvalues. This was extended by Charles Hermite in 1855 to what are now called Hermitian matrices. Around the same time, Francesco Brioschi proved that the eigenvalues of orthogonal matrices lie on the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
, and
Alfred Clebsch Rudolf Friedrich Alfred Clebsch (19 January 1833 – 7 November 1872) was a German mathematician who made important contributions to algebraic geometry and invariant theory. He attended the University of Königsberg and was habilitated at Humboldt ...
found the corresponding result for skew-symmetric matrices. Finally,
Karl Weierstrass Karl Theodor Wilhelm Weierstrass (; ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the " father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school t ...
clarified an important aspect in the
stability theory In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation, for example, is a stable partial differ ...
started by Laplace, by realizing that defective matrices can cause instability. In the meantime,
Joseph Liouville Joseph Liouville ( ; ; 24 March 1809 – 8 September 1882) was a French mathematician and engineer. Life and work He was born in Saint-Omer in France on 24 March 1809. His parents were Claude-Joseph Liouville (an army officer) and Thérès ...
studied eigenvalue problems similar to those of Sturm; the discipline that grew out of their work is now called ''
Sturm–Liouville theory In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form \frac \left (x) \frac\right+ q(x)y = -\lambda w(x) y for given functions p(x), q(x) and w(x), together with some ...
''. Schwarz studied the first eigenvalue of
Laplace's equation In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties in 1786. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delt ...
on general domains towards the end of the 19th century, while
Poincaré Poincaré is a French surname. Notable people with the surname include: * Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philos ...
studied
Poisson's equation Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with t ...
a few years later. At the start of the 20th century,
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
studied the eigenvalues of integral operators by viewing the operators as infinite matrices. He was the first to use the German word ''eigen'', which means "own", to denote eigenvalues and eigenvectors in 1904, though he may have been following a related usage by
Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz (; ; 31 August 1821 – 8 September 1894; "von" since 1883) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The ...
. For some time, the standard term in English was "proper value", but the more distinctive term "eigenvalue" is the standard today. The first numerical algorithm for computing eigenvalues and eigenvectors appeared in 1929, when Richard von Mises published the power method. One of the most popular methods today, the QR algorithm, was proposed independently by John G. F. Francis and Vera Kublanovskaya in 1961.


Eigenvalues and eigenvectors of matrices

Eigenvalues and eigenvectors are often introduced to students in the context of linear algebra courses focused on matrices.Cornell University Department of Mathematics (2016
''Lower-Level Courses for Freshmen and Sophomores''
. Accessed on 2016-03-27.
University of Michigan Mathematics (2016
''Math Course Catalogue''
. Accessed on 2016-03-27.
Furthermore, linear transformations over a finite-dimensional vector space can be represented using matrices, which is especially common in numerical and computational applications. Consider -dimensional vectors that are formed as a list of scalars, such as the three-dimensional vectors \mathbf x = \begin1\\-3\\4\end\quad\mbox\quad \mathbf y = \begin-20\\60\\-80\end. These vectors are said to be scalar multiples of each other, or parallel or
collinear In geometry, collinearity of a set of Point (geometry), points is the property of their lying on a single Line (geometry), line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, t ...
, if there is a scalar such that \mathbf x = \lambda \mathbf y. In this case, \lambda = -\frac . Now consider the linear transformation of -dimensional vectors defined by an by matrix , A \mathbf v = \mathbf w, or \begin A_ & A_ & \cdots & A_ \\ A_ & A_ & \cdots & A_ \\ \vdots & \vdots & \ddots & \vdots \\ A_ & A_ & \cdots & A_ \\ \end\begin v_1 \\ v_2 \\ \vdots \\ v_n \end = \begin w_1 \\ w_2 \\ \vdots \\ w_n \end where, for each row, w_i = A_ v_1 + A_ v_2 + \cdots + A_ v_n = \sum_^n A_ v_j. If it occurs that and are scalar multiples, that is if then is an eigenvector of the linear transformation and the scale factor is the eigenvalue corresponding to that eigenvector. Equation () is the eigenvalue equation for the matrix . Equation () can be stated equivalently as where is the by
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the obje ...
and 0 is the zero vector.


Eigenvalues and the characteristic polynomial

Equation () has a nonzero solution ''v''
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
the
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of the matrix is zero. Therefore, the eigenvalues of ''A'' are values of ''λ'' that satisfy the equation Using the Leibniz formula for determinants, the left-hand side of equation () is a
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
function of the variable ''λ'' and the degree of this polynomial is ''n'', the order of the matrix ''A''. Its
coefficient In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s depend on the entries of ''A'', except that its term of degree ''n'' is always (−1)''n''''λ''''n''. This polynomial is called the ''
characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The ...
'' of ''A''. Equation () is called the ''characteristic equation'' or the ''secular equation'' of ''A''. The
fundamental theorem of algebra The fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem, states that every non-constant polynomial, constant single-variable polynomial with Complex number, complex coefficients has at least one comp ...
implies that the characteristic polynomial of an ''n''-by-''n'' matrix ''A'', being a polynomial of degree ''n'', can be factored into the product of ''n'' linear terms, where each ''λ''''i'' may be real but in general is a complex number. The numbers ''λ''1, ''λ''2, ..., ''λ''''n'', which may not all have distinct values, are roots of the polynomial and are the eigenvalues of ''A''. As a brief example, which is described in more detail in the examples section later, consider the matrix A = \begin 2 & 1\\ 1 & 2 \end. Taking the determinant of , the characteristic polynomial of ''A'' is \det(A - \lambda I) = \begin 2 - \lambda & 1 \\ 1 & 2 - \lambda \end = 3 - 4\lambda + \lambda^2. Setting the characteristic polynomial equal to zero, it has roots at and , which are the two eigenvalues of ''A''. The eigenvectors corresponding to each eigenvalue can be found by solving for the components of v in the equation In this example, the eigenvectors are any nonzero scalar multiples of \mathbf v_ = \begin 1 \\ -1 \end, \quad \mathbf v_ = \begin 1 \\ 1 \end. If the entries of the matrix ''A'' are all real numbers, then the coefficients of the characteristic polynomial will also be real numbers, but the eigenvalues may still have nonzero imaginary parts. The entries of the corresponding eigenvectors therefore may also have nonzero imaginary parts. Similarly, the eigenvalues may be
irrational number In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, ...
s even if all the entries of ''A'' are
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s or even if they are all integers. However, if the entries of ''A'' are all
algebraic number In mathematics, an algebraic number is a number that is a root of a function, root of a non-zero polynomial in one variable with integer (or, equivalently, Rational number, rational) coefficients. For example, the golden ratio (1 + \sqrt)/2 is ...
s, which include the rationals, the eigenvalues must also be algebraic numbers. The non-real roots of a real polynomial with real coefficients can be grouped into pairs of
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
s, namely with the two members of each pair having imaginary parts that differ only in sign and the same real part. If the degree is odd, then by the
intermediate value theorem In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval , then it takes on any given value between f(a) and f(b) at some point within the interval. This has two imp ...
at least one of the roots is real. Therefore, any real matrix with odd order has at least one real eigenvalue, whereas a real matrix with even order may not have any real eigenvalues. The eigenvectors associated with these complex eigenvalues are also complex and also appear in complex conjugate pairs.


Spectrum of a matrix

The
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of a matrix is the list of eigenvalues, repeated according to multiplicity; in an alternative notation the set of eigenvalues with their multiplicities. An important quantity associated with the spectrum is the maximum absolute value of any eigenvalue. This is known as the
spectral radius ''Spectral'' is a 2016 Hungarian-American military science fiction action film co-written and directed by Nic Mathieu. Written with Ian Fried (screenwriter), Ian Fried & George Nolfi, the film stars James Badge Dale as DARPA research scientist Ma ...
of the matrix.


Algebraic multiplicity

Let ''λ''''i'' be an eigenvalue of an ''n'' by ''n'' matrix ''A''. The algebraic multiplicity ''μ''''A''(''λ''''i'') of the eigenvalue is its multiplicity as a root of the characteristic polynomial, that is, the largest integer ''k'' such that (''λ'' − ''λ''''i'')''k'' divides evenly that polynomial. Suppose a matrix ''A'' has dimension ''n'' and ''d'' ≤ ''n'' distinct eigenvalues. Whereas equation () factors the characteristic polynomial of ''A'' into the product of ''n'' linear terms with some terms potentially repeating, the characteristic polynomial can also be written as the product of ''d'' terms each corresponding to a distinct eigenvalue and raised to the power of the algebraic multiplicity, \det(A - \lambda I) = (\lambda_1 - \lambda)^(\lambda_2 - \lambda)^ \cdots (\lambda_d - \lambda)^. If ''d'' = ''n'' then the right-hand side is the product of ''n'' linear terms and this is the same as equation (). The size of each eigenvalue's algebraic multiplicity is related to the dimension ''n'' as \begin 1 &\leq \mu_A(\lambda_i) \leq n, \\ \mu_A &= \sum_^d \mu_A\left(\lambda_i\right) = n. \end If ''μ''''A''(''λ''''i'') = 1, then ''λ''''i'' is said to be a ''simple eigenvalue''. If ''μ''''A''(''λ''''i'') equals the geometric multiplicity of ''λ''''i'', ''γ''''A''(''λ''''i''), defined in the next section, then ''λ''''i'' is said to be a ''semisimple eigenvalue''.


Eigenspaces, geometric multiplicity, and the eigenbasis for matrices

Given a particular eigenvalue ''λ'' of the ''n'' by ''n'' matrix ''A'', define the
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
''E'' to be all vectors v that satisfy equation (), E = \left\. On one hand, this set is precisely the kernel or nullspace of the matrix . On the other hand, by definition, any nonzero vector that satisfies this condition is an eigenvector of ''A'' associated with ''λ''. So, the set ''E'' is the union of the zero vector with the set of all eigenvectors of ''A'' associated with ''λ'', and ''E'' equals the nullspace of ''E'' is called the eigenspace or characteristic space of ''A'' associated with ''λ''. In general ''λ'' is a complex number and the eigenvectors are complex ''n'' by 1 matrices. A property of the nullspace is that it is a
linear subspace In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a ''function (mathematics), function'' (or ''mapping (mathematics), mapping''); * linearity of a ''polynomial''. An example of a li ...
, so ''E'' is a linear subspace of \mathbb^n. Because the eigenspace ''E'' is a linear subspace, it is closed under addition. That is, if two vectors u and v belong to the set ''E'', written , then or equivalently . This can be checked using the
distributive property In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary ...
of matrix multiplication. Similarly, because ''E'' is a linear subspace, it is closed under scalar multiplication. That is, if and ''α'' is a complex number, or equivalently . This can be checked by noting that multiplication of complex matrices by complex numbers is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
. As long as u + v and ''α''v are not zero, they are also eigenvectors of ''A'' associated with ''λ''. The dimension of the eigenspace ''E'' associated with ''λ'', or equivalently the maximum number of linearly independent eigenvectors associated with ''λ'', is referred to as the eigenvalue's geometric multiplicity \gamma_A(\lambda). Because ''E'' is also the nullspace of , the geometric multiplicity of ''λ'' is the dimension of the nullspace of also called the ''nullity'' of which relates to the dimension and rank of as \gamma_A(\lambda) = n - \operatorname(A - \lambda I). Because of the definition of eigenvalues and eigenvectors, an eigenvalue's geometric multiplicity must be at least one, that is, each eigenvalue has at least one associated eigenvector. Furthermore, an eigenvalue's geometric multiplicity cannot exceed its algebraic multiplicity. Additionally, recall that an eigenvalue's algebraic multiplicity cannot exceed ''n''. 1 \le \gamma_A(\lambda) \le \mu_A(\lambda) \le n To prove the inequality \gamma_A(\lambda)\le\mu_A(\lambda), consider how the definition of geometric multiplicity implies the existence of \gamma_A(\lambda) orthonormal eigenvectors \boldsymbol_1,\, \ldots,\, \boldsymbol_, such that A \boldsymbol_k = \lambda \boldsymbol_k. We can therefore find a (unitary) matrix whose first \gamma_A(\lambda) columns are these eigenvectors, and whose remaining columns can be any orthonormal set of n - \gamma_A(\lambda) vectors orthogonal to these eigenvectors of . Then has full rank and is therefore invertible. Evaluating D:=V^TAV, we get a matrix whose top left block is the diagonal matrix \lambda I_. This can be seen by evaluating what the left-hand side does to the first column basis vectors. By reorganizing and adding -\xi V on both sides, we get (A - \xi I)V = V(D - \xi I) since commutes with . In other words, A - \xi I is similar to D - \xi I, and \det(A - \xi I) = \det(D - \xi I). But from the definition of , we know that \det(D - \xi I) contains a factor (\xi - \lambda)^, which means that the algebraic multiplicity of \lambda must satisfy \mu_A(\lambda) \ge \gamma_A(\lambda). Suppose has d \leq n distinct eigenvalues \lambda_1, \ldots, \lambda_d, where the geometric multiplicity of \lambda_i is \gamma_A (\lambda_i). The total geometric multiplicity of , \begin \gamma_A &= \sum_^d \gamma_A(\lambda_i), \\ d &\le \gamma_A \le n, \end is the dimension of the sum of all the eigenspaces of 's eigenvalues, or equivalently the maximum number of linearly independent eigenvectors of . If \gamma_A=n, then * The direct sum of the eigenspaces of all of 's eigenvalues is the entire vector space \mathbb^n. * A basis of \mathbb^n can be formed from linearly independent eigenvectors of ; such a basis is called an eigenbasis * Any vector in \mathbb^n can be written as a linear combination of eigenvectors of .


Additional properties

Let A be an arbitrary n \times n matrix of complex numbers with eigenvalues \lambda_1, \ldots, \lambda_n. Each eigenvalue appears \mu_A(\lambda_i) times in this list, where \mu_A(\lambda_i) is the eigenvalue's algebraic multiplicity. The following are properties of this matrix and its eigenvalues: * The trace of A, defined as the sum of its diagonal elements, is also the sum of all eigenvalues, *: \operatorname(A) = \sum_^n a_ = \sum_^n \lambda_i = \lambda_1 + \lambda_2 + \cdots + \lambda_n. * The
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of A is the product of all its eigenvalues, *: \det(A) = \prod_^n \lambda_i = \lambda_1\lambda_2 \cdots \lambda_n. * The eigenvalues of the kth power of A; i.e., the eigenvalues of A^k, for any positive integer k, are \lambda_1^k, \ldots, \lambda_n^k. * The matrix A is
invertible In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
if and only if every eigenvalue is nonzero. * If A is invertible, then the eigenvalues of A^ are \frac, \ldots, \frac and each eigenvalue's geometric multiplicity coincides. Moreover, since the characteristic polynomial of the inverse is the reciprocal polynomial of the original, the eigenvalues share the same algebraic multiplicity. * If A is equal to its conjugate transpose A^*, or equivalently if A is Hermitian, then every eigenvalue is real. The same is true of any symmetric real matrix. * If A is not only Hermitian but also positive-definite, positive-semidefinite, negative-definite, or negative-semidefinite, then every eigenvalue is positive, non-negative, negative, or non-positive, respectively. * If A is unitary, every eigenvalue has absolute value , \lambda_i, =1. * If A is a n\times n matrix and \ are its eigenvalues, then the eigenvalues of matrix I+A (where I is the identity matrix) are \. Moreover, if \alpha\in\mathbb C, the eigenvalues of \alpha I+A are \. More generally, for a polynomial P the eigenvalues of matrix P(A) are \.


Left and right eigenvectors

Many disciplines traditionally represent vectors as matrices with a single column rather than as matrices with a single row. For that reason, the word "eigenvector" in the context of matrices almost always refers to a right eigenvector, namely a ''column'' vector that ''right'' multiplies the n \times n matrix A in the defining equation, equation (), A \mathbf v = \lambda \mathbf v. The eigenvalue and eigenvector problem can also be defined for ''row'' vectors that ''left'' multiply matrix A. In this formulation, the defining equation is \mathbf u A = \kappa \mathbf u, where \kappa is a scalar and u is a 1 \times n matrix. Any row vector u satisfying this equation is called a left eigenvector of A and \kappa is its associated eigenvalue. Taking the transpose of this equation, A^\textsf \mathbf u^\textsf = \kappa \mathbf u^\textsf. Comparing this equation to equation (), it follows immediately that a left eigenvector of A is the same as the transpose of a right eigenvector of A^\textsf, with the same eigenvalue. Furthermore, since the characteristic polynomial of A^\textsf is the same as the characteristic polynomial of A, the left and right eigenvectors of A are associated with the same eigenvalues.


Diagonalization and the eigendecomposition

Suppose the eigenvectors of ''A'' form a basis, or equivalently ''A'' has ''n'' linearly independent eigenvectors v1, v2, ..., v''n'' with associated eigenvalues ''λ''1, ''λ''2, ..., ''λ''''n''. The eigenvalues need not be distinct. Define a
square matrix In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Squ ...
''Q'' whose columns are the ''n'' linearly independent eigenvectors of ''A'', : Q = \begin \mathbf v_1 & \mathbf v_2 & \cdots & \mathbf v_n \end. Since each column of ''Q'' is an eigenvector of ''A'', right multiplying ''A'' by ''Q'' scales each column of ''Q'' by its associated eigenvalue, : AQ = \begin \lambda_1 \mathbf v_1 & \lambda_2 \mathbf v_2 & \cdots & \lambda_n \mathbf v_n \end. With this in mind, define a diagonal matrix Λ where each diagonal element Λ''ii'' is the eigenvalue associated with the ''i''th column of ''Q''. Then : AQ = Q\Lambda. Because the columns of ''Q'' are linearly independent, Q is invertible. Right multiplying both sides of the equation by ''Q''−1, : A = Q\Lambda Q^, or by instead left multiplying both sides by ''Q''−1, : Q^AQ = \Lambda. ''A'' can therefore be decomposed into a matrix composed of its eigenvectors, a diagonal matrix with its eigenvalues along the diagonal, and the inverse of the matrix of eigenvectors. This is called the eigendecomposition and it is a similarity transformation. Such a matrix ''A'' is said to be ''similar'' to the diagonal matrix Λ or '' diagonalizable''. The matrix ''Q'' is the change of basis matrix of the similarity transformation. Essentially, the matrices ''A'' and Λ represent the same linear transformation expressed in two different bases. The eigenvectors are used as the basis when representing the linear transformation as Λ. Conversely, suppose a matrix ''A'' is diagonalizable. Let ''P'' be a non-singular square matrix such that ''P''−1''AP'' is some diagonal matrix ''D''. Left multiplying both by ''P'', . Each column of ''P'' must therefore be an eigenvector of ''A'' whose eigenvalue is the corresponding diagonal element of ''D''. Since the columns of ''P'' must be linearly independent for ''P'' to be invertible, there exist ''n'' linearly independent eigenvectors of ''A''. It then follows that the eigenvectors of ''A'' form a basis if and only if ''A'' is diagonalizable. A matrix that is not diagonalizable is said to be defective. For defective matrices, the notion of eigenvectors generalizes to generalized eigenvectors and the diagonal matrix of eigenvalues generalizes to the
Jordan normal form \begin \lambda_1 1\hphantom\hphantom\\ \hphantom\lambda_1 1\hphantom\\ \hphantom\lambda_1\hphantom\\ \hphantom\lambda_2 1\hphantom\hphantom\\ \hphantom\hphantom\lambda_2\hphantom\\ \hphantom\lambda_3\hphantom\\ \hphantom\ddots\hphantom\\ ...
. Over an algebraically closed field, any matrix ''A'' has a
Jordan normal form \begin \lambda_1 1\hphantom\hphantom\\ \hphantom\lambda_1 1\hphantom\\ \hphantom\lambda_1\hphantom\\ \hphantom\lambda_2 1\hphantom\hphantom\\ \hphantom\hphantom\lambda_2\hphantom\\ \hphantom\lambda_3\hphantom\\ \hphantom\ddots\hphantom\\ ...
and therefore admits a basis of generalized eigenvectors and a decomposition into generalized eigenspaces.


Variational characterization

In the Hermitian case, eigenvalues can be given a variational characterization. The largest eigenvalue of H is the maximum value of the
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong t ...
\mathbf x^\textsf H \mathbf x / \mathbf x^\textsf \mathbf x. A value of \mathbf x that realizes that maximum is an eigenvector.


Matrix examples


Two-dimensional matrix example

Consider the matrix A = \begin 2 & 1\\ 1 & 2 \end. The figure on the right shows the effect of this transformation on point coordinates in the plane. The eigenvectors ''v'' of this transformation satisfy equation (), and the values of ''λ'' for which the determinant of the matrix (''A'' − ''λI'') equals zero are the eigenvalues. Taking the determinant to find characteristic polynomial of ''A'', \begin \det(A - \lambda I) &= \left, \begin 2 & 1 \\ 1 & 2 \end - \lambda\begin 1 & 0 \\ 0 & 1 \end\ = \begin 2 - \lambda & 1 \\ 1 & 2 - \lambda \end \\ pt &= 3 - 4\lambda + \lambda^2 \\ pt &= (\lambda - 3)(\lambda - 1). \end Setting the characteristic polynomial equal to zero, it has roots at and , which are the two eigenvalues of ''A''. For , equation () becomes, (A - I)\mathbf_ = \begin 1 & 1\\ 1 & 1\end\beginv_1 \\ v_2\end = \begin0 \\ 0\end 1v_1 + 1v_2 = 0 Any nonzero vector with ''v''1 = −''v''2 solves this equation. Therefore, \mathbf_ = \begin v_1 \\ -v_1 \end = \begin 1 \\ -1 \end is an eigenvector of ''A'' corresponding to ''λ'' = 1, as is any scalar multiple of this vector. For , equation () becomes \begin (A - 3I)\mathbf_ &= \begin -1 & 1\\ 1 & -1 \end \begin v_1 \\ v_2 \end = \begin 0 \\ 0 \end \\ -1v_1 + 1v_2 &= 0;\\ 1v_1 - 1v_2 &= 0 \end Any nonzero vector with ''v''1 = ''v''2 solves this equation. Therefore, \mathbf v_ = \begin v_1 \\ v_1 \end = \begin 1 \\ 1 \end is an eigenvector of ''A'' corresponding to ''λ'' = 3, as is any scalar multiple of this vector. Thus, the vectors v''λ''=1 and v''λ''=3 are eigenvectors of ''A'' associated with the eigenvalues and , respectively.


Three-dimensional matrix example

Consider the matrix A = \begin 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end. The characteristic polynomial of ''A'' is \begin \det(A - \lambda I) &= \left, \begin 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end - \lambda\begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end\ = \begin 2 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 4 \\ 0 & 4 & 9 - \lambda \end, \\ pt &= (2 - \lambda)\bigl 3 - \lambda)(9 - \lambda) - 16\bigr = -\lambda^3 + 14\lambda^2 - 35\lambda + 22. \end The roots of the characteristic polynomial are 2, 1, and 11, which are the only three eigenvalues of ''A''. These eigenvalues correspond to the eigenvectors and or any nonzero multiple thereof.


Three-dimensional matrix example with complex eigenvalues

Consider the cyclic permutation matrix A = \begin 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end. This matrix shifts the coordinates of the vector up by one position and moves the first coordinate to the bottom. Its characteristic polynomial is 1 − ''λ''3, whose roots are \begin \lambda_1 &= 1 \\ \lambda_2 &= -\frac + i \frac \\ \lambda_3 &= \lambda_2^* = -\frac - i \frac \end where i is an
imaginary unit The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
with For the real eigenvalue ''λ''1 = 1, any vector with three equal nonzero entries is an eigenvector. For example, A \begin 5\\ 5\\ 5 \end = \begin 5\\ 5\\ 5 \end = 1 \cdot \begin 5\\ 5\\ 5 \end. For the complex conjugate pair of imaginary eigenvalues, \lambda_2\lambda_3 = 1, \quad \lambda_2^2 = \lambda_3, \quad \lambda_3^2 = \lambda_2. Then A \begin 1 \\ \lambda_2 \\ \lambda_3 \end = \begin \lambda_2 \\ \lambda_3 \\ 1 \end = \lambda_2 \cdot \begin 1 \\ \lambda_2 \\ \lambda_3 \end, and A \begin 1 \\ \lambda_3 \\ \lambda_2 \end = \begin \lambda_3 \\ \lambda_2 \\ 1 \end = \lambda_3 \cdot \begin 1 \\ \lambda_3 \\ \lambda_2 \end. Therefore, the other two eigenvectors of ''A'' are complex and are \mathbf v_ = \begin 1 & \lambda_2 & \lambda_3\end^\textsf and \mathbf v_ = \begin 1 & \lambda_3 & \lambda_2\end^\textsf with eigenvalues ''λ''2 and ''λ''3, respectively. The two complex eigenvectors also appear in a complex conjugate pair, \mathbf v_ = \mathbf v_^*.


Diagonal matrix example

Matrices with entries only along the main diagonal are called '' diagonal matrices''. The eigenvalues of a diagonal matrix are the diagonal elements themselves. Consider the matrix A = \begin 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 3\end. The characteristic polynomial of ''A'' is \det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(3 - \lambda), which has the roots , , and . These roots are the diagonal elements as well as the eigenvalues of ''A''. Each diagonal element corresponds to an eigenvector whose only nonzero component is in the same row as that diagonal element. In the example, the eigenvalues correspond to the eigenvectors, \mathbf v_ = \begin 1\\ 0\\ 0 \end,\quad \mathbf v_ = \begin 0\\ 1\\ 0 \end,\quad \mathbf v_ = \begin 0\\ 0\\ 1 \end, respectively, as well as scalar multiples of these vectors.


Triangular matrix example

A matrix whose elements above the main diagonal are all zero is called a ''lower
triangular matrix In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries ''above'' the main diagonal are zero. Similarly, a square matrix is called if all the entries ''below'' the main diagonal are z ...
'', while a matrix whose elements below the main diagonal are all zero is called an ''upper triangular matrix''. As with diagonal matrices, the eigenvalues of triangular matrices are the elements of the main diagonal. Consider the lower triangular matrix, A = \begin 1 & 0 & 0\\ 1 & 2 & 0\\ 2 & 3 & 3 \end. The characteristic polynomial of ''A'' is \det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(3 - \lambda), which has the roots , , and . These roots are the diagonal elements as well as the eigenvalues of ''A''. These eigenvalues correspond to the eigenvectors, \mathbf v_ = \begin 1\\ -1\\ \frac\end,\quad \mathbf v_ = \begin 0\\ 1\\ -3\end,\quad \mathbf v_ = \begin 0\\ 0\\ 1\end, respectively, as well as scalar multiples of these vectors.


Matrix with repeated eigenvalues example

As in the previous example, the lower triangular matrix A = \begin 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 3 \end, has a characteristic polynomial that is the product of its diagonal elements, \det(A - \lambda I) = \begin 2 - \lambda & 0 & 0 & 0 \\ 1 & 2- \lambda & 0 & 0 \\ 0 & 1 & 3- \lambda & 0 \\ 0 & 0 & 1 & 3- \lambda \end = (2 - \lambda)^2(3 - \lambda)^2. The roots of this polynomial, and hence the eigenvalues, are 2 and 3. The ''algebraic multiplicity'' of each eigenvalue is 2; in other words they are both double roots. The sum of the algebraic multiplicities of all distinct eigenvalues is ''μ''''A'' = 4 = ''n'', the order of the characteristic polynomial and the dimension of ''A''. On the other hand, the ''geometric multiplicity'' of the eigenvalue 2 is only 1, because its eigenspace is spanned by just one vector \begin 0 & 1 & -1 & 1 \end^\textsf and is therefore 1-dimensional. Similarly, the geometric multiplicity of the eigenvalue 3 is 1 because its eigenspace is spanned by just one vector \begin 0 & 0 & 0 & 1 \end^\textsf. The total geometric multiplicity ''γ''''A'' is 2, which is the smallest it could be for a matrix with two distinct eigenvalues. Geometric multiplicities are defined in a later section.


Eigenvector-eigenvalue identity

For a
Hermitian matrix In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the ...
, the norm squared of the ''j''th component of a normalized eigenvector can be calculated using only the matrix eigenvalues and the eigenvalues of the corresponding minor matrix, , v_, ^2 = \frac, where M_j is the submatrix formed by removing the ''j''th row and column from the original matrix. This identity also extends to diagonalizable matrices, and has been rediscovered many times in the literature.


Eigenvalues and eigenfunctions of differential operators

The definitions of eigenvalue and eigenvectors of a linear transformation ''T'' remains valid even if the underlying vector space is an infinite-dimensional
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosophy of mathematics, philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad ...
or
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
. A widely used class of linear transformations acting on infinite-dimensional spaces are the
differential operator In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and retur ...
s on
function space In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a ve ...
s. Let ''D'' be a linear differential operator on the space C of infinitely
differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
real functions of a real argument ''t''. The eigenvalue equation for ''D'' is the differential equation D f(t) = \lambda f(t) The functions that satisfy this equation are eigenvectors of ''D'' and are commonly called eigenfunctions.


Derivative operator example

Consider the derivative operator \tfrac with eigenvalue equation \fracf(t) = \lambda f(t). This differential equation can be solved by multiplying both sides by ''dt''/''f''(''t'') and integrating. Its solution, the exponential function f(t) = f(0)e^, is the eigenfunction of the derivative operator. In this case the eigenfunction is itself a function of its associated eigenvalue. In particular, for ''λ'' = 0 the eigenfunction ''f''(''t'') is a constant. The main
eigenfunction In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, th ...
article gives other examples.


General definition

The concept of eigenvalues and eigenvectors extends naturally to arbitrary linear transformations on arbitrary vector spaces. Let ''V'' be any vector space over some field ''K'' of
scalars Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers *Scalar (physics), a physical quantity that can be described by a single element of a number field such a ...
, and let ''T'' be a linear transformation mapping ''V'' into ''V'', T:V \to V. We say that a nonzero vector v ∈ ''V'' is an eigenvector of ''T'' if and only if there exists a scalar ''λ'' ∈ ''K'' such that This equation is called the eigenvalue equation for ''T'', and the scalar ''λ'' is the eigenvalue of ''T'' corresponding to the eigenvector v. ''T''(v) is the result of applying the transformation ''T'' to the vector v, while ''λ''v is the product of the scalar ''λ'' with v.


Eigenspaces, geometric multiplicity, and the eigenbasis

Given an eigenvalue ''λ'', consider the set E = \left\, which is the union of the zero vector with the set of all eigenvectors associated with ''λ''. ''E'' is called the eigenspace or characteristic space of ''T'' associated with ''λ''. By definition of a linear transformation, \begin T(\mathbf + \mathbf) &= T(\mathbf) + T(\mathbf),\\ T(\alpha \mathbf) &= \alpha T(\mathbf), \end for x, y ∈ ''V'' and ''α'' ∈ ''K''. Therefore, if u and v are eigenvectors of ''T'' associated with eigenvalue ''λ'', namely u, v ∈ ''E'', then \begin T(\mathbf + \mathbf) &= \lambda (\mathbf + \mathbf),\\ T(\alpha \mathbf) &= \lambda (\alpha \mathbf). \end So, both u + v and αv are either zero or eigenvectors of ''T'' associated with ''λ'', namely u + v, ''α''v ∈ ''E'', and ''E'' is closed under addition and scalar multiplication. The eigenspace ''E'' associated with ''λ'' is therefore a linear subspace of ''V''. If that subspace has dimension 1, it is sometimes called an eigenline. The geometric multiplicity ''γ''''T''(''λ'') of an eigenvalue ''λ'' is the dimension of the eigenspace associated with ''λ'', i.e., the maximum number of linearly independent eigenvectors associated with that eigenvalue. By the definition of eigenvalues and eigenvectors, ''γ''''T''(''λ'') ≥ 1 because every eigenvalue has at least one eigenvector. The eigenspaces of ''T'' always form a
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
. As a consequence, eigenvectors of ''different'' eigenvalues are always linearly independent. Therefore, the sum of the dimensions of the eigenspaces cannot exceed the dimension ''n'' of the vector space on which ''T'' operates, and there cannot be more than ''n'' distinct eigenvalues. Any subspace spanned by eigenvectors of ''T'' is an invariant subspace of ''T'', and the restriction of ''T'' to such a subspace is diagonalizable. Moreover, if the entire vector space ''V'' can be spanned by the eigenvectors of ''T'', or equivalently if the direct sum of the eigenspaces associated with all the eigenvalues of ''T'' is the entire vector space ''V'', then a basis of ''V'' called an eigenbasis can be formed from linearly independent eigenvectors of ''T''. When ''T'' admits an eigenbasis, ''T'' is diagonalizable.


Spectral theory

If ''λ'' is an eigenvalue of ''T'', then the operator (''T'' − ''λI'') is not one-to-one, and therefore its inverse (''T'' − ''λI'')−1 does not exist. The converse is true for finite-dimensional vector spaces, but not for infinite-dimensional vector spaces. In general, the operator (''T'' − ''λI'') may not have an inverse even if ''λ'' is not an eigenvalue. For this reason, in
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
eigenvalues can be generalized to the spectrum of a linear operator ''T'' as the set of all scalars ''λ'' for which the operator (''T'' − ''λI'') has no bounded inverse. The spectrum of an operator always contains all its eigenvalues but is not limited to them.


Associative algebras and representation theory

One can generalize the algebraic object that is acting on the vector space, replacing a single operator acting on a vector space with an algebra representation – an
associative algebra In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
acting on a module. The study of such actions is the field of
representation theory Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
. The representation-theoretical concept of weight is an analog of eigenvalues, while ''weight vectors'' and ''weight spaces'' are the analogs of eigenvectors and eigenspaces, respectively. Hecke eigensheaf is a tensor-multiple of itself and is considered in Langlands correspondence.


Dynamic equations

The simplest
difference equation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
s have the form : x_t = a_1 x_ + a_2 x_ + \cdots + a_k x_. The solution of this equation for ''x'' in terms of ''t'' is found by using its characteristic equation : \lambda^k - a_1\lambda^ - a_2\lambda^ - \cdots - a_\lambda-a_k = 0, which can be found by stacking into matrix form a set of equations consisting of the above difference equation and the ''k'' – 1 equations x_ = x_,\ \dots,\ x_ = x_, giving a ''k''-dimensional system of the first order in the stacked variable vector \begin x_t & \cdots & x_ \end in terms of its once-lagged value, and taking the characteristic equation of this system's matrix. This equation gives ''k'' characteristic roots \lambda_1,\, \ldots,\, \lambda_k, for use in the solution equation : x_t = c_1\lambda_1^t + \cdots + c_k\lambda_k^t. A similar procedure is used for solving a differential equation of the form : \frac + a_\frac + \cdots + a_1\frac + a_0 x = 0.


Calculation

The calculation of eigenvalues and eigenvectors is a topic where theory, as presented in elementary linear algebra textbooks, is often very far from practice.


Classical method

The classical method is to first find the eigenvalues, and then calculate the eigenvectors for each eigenvalue. It is in several ways poorly suited for non-exact arithmetics such as
floating-point In computing, floating-point arithmetic (FP) is arithmetic on subsets of real numbers formed by a ''significand'' (a Sign (mathematics), signed sequence of a fixed number of digits in some Radix, base) multiplied by an integer power of that ba ...
.


Eigenvalues

The eigenvalues of a matrix A can be determined by finding the roots of the characteristic polynomial. This is easy for 2 \times 2 matrices, but the difficulty increases rapidly with the size of the matrix. In theory, the coefficients of the characteristic polynomial can be computed exactly, since they are sums of products of matrix elements; and there are algorithms that can find all the roots of a polynomial of arbitrary degree to any required accuracy. However, this approach is not viable in practice because the coefficients would be contaminated by unavoidable
round-off error In computing, a roundoff error, also called rounding error, is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. Roun ...
s, and the roots of a polynomial can be an extremely sensitive function of the coefficients (as exemplified by Wilkinson's polynomial). Even for matrices whose elements are integers the calculation becomes nontrivial, because the sums are very long; the constant term is the
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
, which for an n \times n matrix is a sum of n! different products. Explicit algebraic formulas for the roots of a polynomial exist only if the degree n is 4 or less. According to the
Abel–Ruffini theorem In mathematics, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, ''general'' means t ...
there is no general, explicit and exact algebraic formula for the roots of a polynomial with degree 5 or more. (Generality matters because any polynomial with degree n is the characteristic polynomial of some companion matrix of order n.) Therefore, for matrices of order 5 or more, the eigenvalues and eigenvectors cannot be obtained by an explicit algebraic formula, and must therefore be computed by approximate
numerical method In numerical analysis, a numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm. Mathem ...
s. Even the exact formula for the roots of a degree 3 polynomial is numerically impractical.


Eigenvectors

Once the (exact) value of an eigenvalue is known, the corresponding eigenvectors can be found by finding nonzero solutions of the eigenvalue equation, that becomes a
system of linear equations In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variable (math), variables. For example, : \begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of th ...
with known coefficients. For example, once it is known that 6 is an eigenvalue of the matrix A = \begin 4 & 1\\ 6 & 3\end we can find its eigenvectors by solving the equation A v = 6 v, that is \begin 4 & 1\\ 6 & 3\end\beginx \\y\end = 6 \cdot \beginx \\y\end This matrix equation is equivalent to two
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
s \left\{ \begin{aligned} 4x + y &= 6x \\ 6x + 3y &= 6y\end{aligned} \right. that is \left\{ \begin{aligned} -2x + y &= 0 \\ 6x - 3y &= 0\end{aligned} \right. Both equations reduce to the single linear equation y=2x. Therefore, any vector of the form \begin{bmatrix} a & 2a \end{bmatrix}^\textsf{T}, for any nonzero real number a, is an eigenvector of A with eigenvalue \lambda = 6. The matrix A above has another eigenvalue \lambda=1. A similar calculation shows that the corresponding eigenvectors are the nonzero solutions of 3x+y=0, that is, any vector of the form \begin{bmatrix} b & -3b \end{bmatrix}^\textsf{T}, for any nonzero real number b.


Simple iterative methods

The converse approach, of first seeking the eigenvectors and then determining each eigenvalue from its eigenvector, turns out to be far more tractable for computers. The easiest algorithm here consists of picking an arbitrary starting vector and then repeatedly multiplying it with the matrix (optionally normalizing the vector to keep its elements of reasonable size); this makes the vector converge towards an eigenvector. A variation is to instead multiply the vector by this causes it to converge to an eigenvector of the eigenvalue closest to If \mathbf{v} is (a good approximation of) an eigenvector of A, then the corresponding eigenvalue can be computed as : \lambda = \frac{\mathbf{v}^* A\mathbf{v{\mathbf{v}^* \mathbf{v where \mathbf{v}^* denotes the conjugate transpose of \mathbf{v}.


Modern methods

Efficient, accurate methods to compute eigenvalues and eigenvectors of arbitrary matrices were not known until the QR algorithm was designed in 1961. Combining the Householder transformation with the LU decomposition results in an algorithm with better convergence than the QR algorithm. For large Hermitian
sparse matrices In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix (mathematics), matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix ...
, the
Lanczos algorithm The Lanczos algorithm is an iterative method devised by Cornelius Lanczos that is an adaptation of power iteration, power methods to find the m "most useful" (tending towards extreme highest/lowest) eigenvalues and eigenvectors of an n \times n ...
is one example of an efficient
iterative method In computational mathematics, an iterative method is a Algorithm, mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''i''-th approximation (called an " ...
to compute eigenvalues and eigenvectors, among several other possibilities. Most numeric methods that compute the eigenvalues of a matrix also determine a set of corresponding eigenvectors as a by-product of the computation, although sometimes implementors choose to discard the eigenvector information as soon as it is no longer needed.


Applications


Geometric transformations

Eigenvectors and eigenvalues can be useful for understanding linear transformations of geometric shapes. The following table presents some example transformations in the plane along with their 2×2 matrices, eigenvalues, and eigenvectors. {, class="wikitable" style="text-align:center; margin:1em auto 1em auto;" , + Eigenvalues of geometric transformations , - ! ! scope="col" , Scaling ! scope="col" , Unequal scaling ! scope="col" ,
Rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
! scope="col" , Horizontal shear ! scope="col" , Hyperbolic rotation , - ! scope="row" , Illustration , , , , , , - style="vertical-align:top" ! scope="row" , Matrix , \begin{bmatrix}k & 0\\ 0 & k\end{bmatrix} , \begin{bmatrix}k_1 & 0\\ 0 & k_2\end{bmatrix} , \begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix} , \begin{bmatrix}1 & k\\ 0 & 1\end{bmatrix} , \begin{bmatrix}\cosh\varphi & \sinh\varphi\\ \sinh\varphi & \cosh\varphi\end{bmatrix} , - ! scope="row" , Characteristic
polynomial , \ (\lambda - k)^2 , (\lambda - k_1)(\lambda - k_2) , \lambda^2 - 2\cos(\theta)\lambda + 1 , \ (\lambda - 1)^2 , \lambda^2 - 2\cosh(\varphi)\lambda + 1 , - ! scope="row" , Eigenvalues, \lambda_i , \lambda_1 = \lambda_2 = k , \begin{align}\lambda_1 &= k_1 \\ \lambda_2 &= k_2\end{align} , \begin{align}\lambda_1 &= e^{i\theta} \\ &= \cos\theta + i\sin\theta \\ \lambda_2 &= e^{-i\theta} \\ &= \cos\theta - i\sin\theta \end{align} , \lambda_1 = \lambda_2 = 1 , \begin{align}\lambda_1 &= e^\varphi \\ &= \cosh\varphi + \sinh\varphi \\ \lambda_2 &= e^{-\varphi} \\ &= \cosh\varphi - \sinh\varphi \end{align} , - ! scope="row" , Algebraic ,
\mu_i = \mu(\lambda_i) , \mu_1 = 2 , \begin{align}\mu_1 &= 1 \\ \mu_2 &= 1 \end{align} , \begin{align}\mu_1 &= 1 \\ \mu_2 &= 1 \end{align} , \mu_1 = 2 , \begin{align}\mu_1 &= 1 \\ \mu_2 &= 1 \end{align} , - ! scope="row" , Geometric ,
\gamma_i = \gamma(\lambda_i) , \gamma_1 = 2 , \begin{align}\gamma_1 &= 1 \\ \gamma_2 &= 1 \end{align} , \begin{align}\gamma_1 &= 1 \\ \gamma_2 &= 1 \end{align} , \gamma_1 = 1 , \begin{align}\gamma_1 &= 1 \\ \gamma_2 &= 1 \end{align} , - ! scope="row" , Eigenvectors , All nonzero vectors , \begin{align} \mathbf u_1 &= \begin{bmatrix} 1\\ 0\end{bmatrix} \\ \mathbf u_2 &= \begin{bmatrix} 0\\ 1\end{bmatrix} \end{align} , \begin{align} \mathbf u_1 &= \begin{bmatrix} 1\\ -i\end{bmatrix} \\ \mathbf u_2 &= \begin{bmatrix} 1\\ +i\end{bmatrix} \end{align} , \mathbf u_1 = \begin{bmatrix} 1\\ 0 \end{bmatrix} , \begin{align} \mathbf u_1 &= \begin{bmatrix} 1\\ 1\end{bmatrix} \\ \mathbf u_2 &= \begin{bmatrix} 1\\ -1\end{bmatrix} \end{align} The characteristic equation for a rotation is a
quadratic equation In mathematics, a quadratic equation () is an equation that can be rearranged in standard form as ax^2 + bx + c = 0\,, where the variable (mathematics), variable represents an unknown number, and , , and represent known numbers, where . (If and ...
with
discriminant In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the zero of a function, roots without computing them. More precisely, it is a polynomial function of the coef ...
D = -4(\sin\theta)^2, which is a negative number whenever is not an integer multiple of 180°. Therefore, except for these special cases, the two eigenvalues are complex numbers, \cos\theta \pm i\sin\theta; and all eigenvectors have non-real entries. Indeed, except for those special cases, a rotation changes the direction of every nonzero vector in the plane. A linear transformation that takes a square to a rectangle of the same area (a
squeeze mapping In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation (mathematics), rotation or shear mapping. For a fixed p ...
) has reciprocal eigenvalues.


Principal component analysis

The eigendecomposition of a symmetric positive semidefinite (PSD)
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
yields an orthogonal basis of eigenvectors, each of which has a nonnegative eigenvalue. The orthogonal decomposition of a PSD matrix is used in
multivariate analysis Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable, i.e., '' multivariate random variables''. Multivariate statistics concerns understanding the differ ...
, where the sample covariance matrices are PSD. This orthogonal decomposition is called
principal component analysis Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing. The data is linearly transformed onto a new coordinate system such that th ...
(PCA) in statistics. PCA studies linear relations among variables. PCA is performed on the covariance matrix or the
correlation matrix In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics ...
(in which each variable is scaled to have its
sample variance In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, ...
equal to one). For the covariance or correlation matrix, the eigenvectors correspond to principal components and the eigenvalues to the variance explained by the principal components. Principal component analysis of the correlation matrix provides an orthogonal basis for the space of the observed data: In this basis, the largest eigenvalues correspond to the principal components that are associated with most of the covariability among a number of observed data. Principal component analysis is used as a means of
dimensionality reduction Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally ...
in the study of large
data set A data set (or dataset) is a collection of data. In the case of tabular data, a data set corresponds to one or more table (database), database tables, where every column (database), column of a table represents a particular Variable (computer sci ...
s, such as those encountered in
bioinformatics Bioinformatics () is an interdisciplinary field of science that develops methods and Bioinformatics software, software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, ...
. In
Q methodology Q methodology is a research method used in psychology and in social sciences to study people's "subjectivity"—that is, their viewpoint. Q was developed by psychologist William Stephenson. It has been used both in clinical settings for assessing ...
, the eigenvalues of the correlation matrix determine the Q-methodologist's judgment of ''practical'' significance (which differs from the
statistical significance In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by \alpha, is the ...
of
hypothesis testing A statistical hypothesis test is a method of statistical inference used to decide whether the data provide sufficient evidence to reject a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. T ...
; cf. criteria for determining the number of factors). More generally, principal component analysis can be used as a method of
factor analysis Factor analysis is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. For example, it is possible that variations in six observe ...
in structural equation modeling.


Graphs

In
spectral graph theory In mathematics, spectral graph theory is the study of the properties of a Graph (discrete mathematics), graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacen ...
, an eigenvalue of a graph is defined as an eigenvalue of the graph's
adjacency matrix In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph (discrete mathematics), graph. The elements of the matrix (mathematics), matrix indicate whether pairs of Vertex (graph theory), vertices ...
A, or (increasingly) of the graph's Laplacian matrix due to its
discrete Laplace operator In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a Graph (discrete mathematics), graph or a lattice (group), discrete grid. For the case of a finite-dimensional graph ...
, which is either D - A (sometimes called the ''combinatorial Laplacian'') or I - D^{-1/2}A D^{-1/2} (sometimes called the ''normalized Laplacian''), where D is a diagonal matrix with D_{ii} equal to the degree of vertex v_i, and in D^{-1/2}, the ith diagonal entry is 1/\sqrt{\deg(v_i)}. The kth principal eigenvector of a graph is defined as either the eigenvector corresponding to the kth largest or kth smallest eigenvalue of the Laplacian. The first principal eigenvector of the graph is also referred to merely as the principal eigenvector. The principal eigenvector is used to measure the centrality of its vertices. An example is
Google Google LLC (, ) is an American multinational corporation and technology company focusing on online advertising, search engine technology, cloud computing, computer software, quantum computing, e-commerce, consumer electronics, and artificial ...
's
PageRank PageRank (PR) is an algorithm used by Google Search to rank web pages in their search engine results. It is named after both the term "web page" and co-founder Larry Page. PageRank is a way of measuring the importance of website pages. Accordin ...
algorithm. The principal eigenvector of a modified
adjacency matrix In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph (discrete mathematics), graph. The elements of the matrix (mathematics), matrix indicate whether pairs of Vertex (graph theory), vertices ...
of the World Wide Web graph gives the page ranks as its components. This vector corresponds to the
stationary distribution Stationary distribution may refer to: * and , a special distribution for a Markov chain such that if the chain starts with its stationary distribution, the marginal distribution of all states at any time will always be the stationary distribution. ...
of the
Markov chain In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally ...
represented by the row-normalized adjacency matrix; however, the adjacency matrix must first be modified to ensure a stationary distribution exists. The second smallest eigenvector can be used to partition the graph into clusters, via
spectral clustering In multivariate statistics, spectral clustering techniques make use of the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions. The similarity matrix is provided ...
. Other methods are also available for clustering.


Markov chains

A
Markov chain In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally ...
is represented by a matrix whose entries are the transition probabilities between states of a system. In particular the entries are non-negative, and every row of the matrix sums to one, being the sum of probabilities of transitions from one state to some other state of the system. The Perron–Frobenius theorem gives sufficient conditions for a Markov chain to have a unique dominant eigenvalue, which governs the convergence of the system to a steady state.


Vibration analysis

Eigenvalue problems occur naturally in the vibration analysis of mechanical structures with many
degrees of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
. The eigenvalues are the natural frequencies (or eigenfrequencies) of vibration, and the eigenvectors are the shapes of these vibrational modes. In particular, undamped vibration is governed by m\ddot{x} + kx = 0 or m\ddot{x} = -kx That is, acceleration is proportional to position (i.e., we expect x to be sinusoidal in time). In n dimensions, m becomes a mass matrix and k a stiffness matrix. Admissible solutions are then a linear combination of solutions to the generalized eigenvalue problem kx = \omega^2 mx where \omega^2 is the eigenvalue and \omega is the (imaginary)
angular frequency In physics, angular frequency (symbol ''ω''), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine ...
. The principal vibration modes are different from the principal compliance modes, which are the eigenvectors of k alone. Furthermore, damped vibration, governed by m\ddot{x} + c\dot{x} + kx = 0 leads to a so-called quadratic eigenvalue problem, \left(\omega^2 m + \omega c + k\right)x = 0. This can be reduced to a generalized eigenvalue problem by algebraic manipulation at the cost of solving a larger system. The orthogonality properties of the eigenvectors allows decoupling of the differential equations so that the system can be represented as linear summation of the eigenvectors. The eigenvalue problem of complex structures is often solved using
finite element analysis Finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical models, mathematical modeling. Typical problem areas of interest include the traditional fields of structural ...
, but neatly generalize the solution to scalar-valued vibration problems.


Tensor of moment of inertia

In
mechanics Mechanics () is the area of physics concerned with the relationships between force, matter, and motion among Physical object, physical objects. Forces applied to objects may result in Displacement (vector), displacements, which are changes of ...
, the eigenvectors of the moment of inertia tensor define the principal axes of a
rigid body In physics, a rigid body, also known as a rigid object, is a solid body in which deformation is zero or negligible, when a deforming pressure or deforming force is applied on it. The distance between any two given points on a rigid body rema ...
. The
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
of moment of
inertia Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newto ...
is a key quantity required to determine the rotation of a rigid body around its
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weight function, weighted relative position (vector), position of the d ...
.


Stress tensor

In
solid mechanics Solid mechanics (also known as mechanics of solids) is the branch of continuum mechanics that studies the behavior of solid materials, especially their motion and deformation (mechanics), deformation under the action of forces, temperature chang ...
, the stress tensor is symmetric and so can be decomposed into a
diagonal In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek � ...
tensor with the eigenvalues on the diagonal and eigenvectors as a basis. Because it is diagonal, in this orientation, the stress tensor has no shear components; the components it does have are the principal components.


Schrödinger equation

An example of an eigenvalue equation where the transformation T is represented in terms of a differential operator is the time-independent
Schrödinger equation The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after E ...
in
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
: : H\psi_E = E\psi_E \, where H, the
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
, is a second-order
differential operator In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and retur ...
and \psi_E, the
wavefunction In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
, is one of its eigenfunctions corresponding to the eigenvalue E, interpreted as its
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
. However, in the case where one is interested only in the
bound state A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them. In quantum physics, a bound state is a quantum state of a ...
solutions of the Schrödinger equation, one looks for \psi_E within the space of square integrable functions. Since this space is a
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
with a well-defined
scalar product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. Not to be confused wit ...
, one can introduce a basis set in which \psi_E and H can be represented as a one-dimensional array (i.e., a vector) and a matrix respectively. This allows one to represent the Schrödinger equation in a matrix form. The
bra–ket notation Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically de ...
is often used in this context. A vector, which represents a state of the system, in the Hilbert space of square integrable functions is represented by , \Psi_E\rangle. In this notation, the Schrödinger equation is: : H, \Psi_E\rangle = E, \Psi_E\rangle where , \Psi_E\rangle is an eigenstate of H and E represents the eigenvalue. H is an
observable In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum ...
self-adjoint operator In mathematics, a self-adjoint operator on a complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. That is, \langle Ax,y \rangle = \langle x,Ay \rangle for al ...
, the infinite-dimensional analog of Hermitian matrices. As in the matrix case, in the equation above H, \Psi_E\rangle is understood to be the vector obtained by application of the transformation H to , \Psi_E\rangle.


Wave transport

Light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
,
acoustic wave Acoustic waves are types of waves that propagate through matter—such as gas, liquid, and/or solids—by causing the particles of the medium to compress and expand. These waves carry energy and are characterized by properties like acoustic pres ...
s, and
microwave Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
s are randomly scattered numerous times when traversing a static disordered system. Even though multiple scattering repeatedly randomizes the waves, ultimately coherent wave transport through the system is a deterministic process which can be described by a field transmission matrix \mathbf{t}. The eigenvectors of the transmission operator \mathbf{t}^\dagger\mathbf{t} form a set of disorder-specific input wavefronts which enable waves to couple into the disordered system's eigenchannels: the independent pathways waves can travel through the system. The eigenvalues, \tau, of \mathbf{t}^\dagger\mathbf{t} correspond to the intensity transmittance associated with each eigenchannel. One of the remarkable properties of the transmission operator of diffusive systems is their bimodal eigenvalue distribution with \tau_\max = 1 and \tau_\min = 0. Furthermore, one of the striking properties of open eigenchannels, beyond the perfect transmittance, is the statistically robust spatial profile of the eigenchannels.


Molecular orbitals

In
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, and in particular in atomic and
molecular physics Molecular physics is the study of the physical properties of molecules and molecular dynamics. The field overlaps significantly with physical chemistry, chemical physics, and quantum chemistry. It is often considered as a sub-field of atomic, mo ...
, within the Hartree–Fock theory, the atomic and molecular orbitals can be defined by the eigenvectors of the Fock operator. The corresponding eigenvalues are interpreted as
ionization potential In physics and chemistry, ionization energy (IE) is the minimum energy required to remove the most loosely bound electron of an isolated gaseous atom, positive ion, or molecule. The first ionization energy is quantitatively expressed as :X(g) ...
s via
Koopmans' theorem Koopmans' theorem states that in closed-shell Hartree–Fock theory (HF), the first ionization energy of a molecular system is equal to the negative of the orbital energy of the highest occupied molecular orbital (HOMO). This theorem is named afte ...
. In this case, the term eigenvector is used in a somewhat more general meaning, since the Fock operator is explicitly dependent on the orbitals and their eigenvalues. Thus, if one wants to underline this aspect, one speaks of nonlinear eigenvalue problems. Such equations are usually solved by an
iteration Iteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. ...
procedure, called in this case self-consistent field method. In
quantum chemistry Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions ...
, one often represents the Hartree–Fock equation in a non-
orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
basis set. This particular representation is a generalized eigenvalue problem called Roothaan equations.


Geology and glaciology

In
geology Geology (). is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth ...
, especially in the study of glacial till, eigenvectors and eigenvalues are used as a method by which a mass of information of a clast's
fabric Textile is an umbrella term that includes various fiber-based materials, including fibers, yarns, filaments, threads, and different types of fabric. At first, the word "textiles" only referred to woven fabrics. However, weaving is no ...
can be summarized in a 3-D space by six numbers. In the field, a geologist may collect such data for hundreds or thousands of clasts in a soil sample, which can be compared graphically or as a
stereographic projection In mathematics, a stereographic projection is a perspective transform, perspective projection of the sphere, through a specific point (geometry), point on the sphere (the ''pole'' or ''center of projection''), onto a plane (geometry), plane (th ...
. Graphically, many geologists use a Tri-Plot (Sneed and Folk) diagram,. A stereographic projection projects 3-dimensional spaces onto a two-dimensional plane. A type of stereographic projection is Wulff Net, which is commonly used in
crystallography Crystallography is the branch of science devoted to the study of molecular and crystalline structure and properties. The word ''crystallography'' is derived from the Ancient Greek word (; "clear ice, rock-crystal"), and (; "to write"). In J ...
to create stereograms. The output for the orientation tensor is in the three orthogonal (perpendicular) axes of space. The three eigenvectors are ordered \mathbf v_1, \mathbf v_2, \mathbf v_3 by their eigenvalues E_1 \geq E_2 \geq E_3; \mathbf v_1 then is the primary orientation/dip of clast, \mathbf v_2 is the secondary and \mathbf v_3 is the tertiary, in terms of strength. The clast orientation is defined as the direction of the eigenvector, on a compass rose of 360°. Dip is measured as the eigenvalue, the modulus of the tensor: this is valued from 0° (no dip) to 90° (vertical). The relative values of E_1, E_2, and E_3 are dictated by the nature of the sediment's fabric. If E_1 = E_2 = E_3, the fabric is said to be isotropic. If E_1 = E_2 > E_3, the fabric is said to be planar. If E_1 > E_2 > E_3, the fabric is said to be linear.


Basic reproduction number

The basic reproduction number (R_0) is a fundamental number in the study of how infectious diseases spread. If one infectious person is put into a population of completely susceptible people, then R_0 is the average number of people that one typical infectious person will infect. The generation time of an infection is the time, t_G, from one person becoming infected to the next person becoming infected. In a heterogeneous population, the next generation matrix defines how many people in the population will become infected after time t_G has passed. The value R_0 is then the largest eigenvalue of the next generation matrix.


Eigenfaces

In
image processing An image or picture is a visual representation. An image can be two-dimensional, such as a drawing, painting, or photograph, or three-dimensional, such as a carving or sculpture. Images may be displayed through other media, including a pr ...
, processed images of faces can be seen as vectors whose components are the
brightness Brightness is an attribute of visual perception in which a source appears to be radiating/reflecting light. In other words, brightness is the perception dictated by the luminance of a visual target. The perception is not linear to luminance, and ...
es of each
pixel In digital imaging, a pixel (abbreviated px), pel, or picture element is the smallest addressable element in a Raster graphics, raster image, or the smallest addressable element in a dot matrix display device. In most digital display devices, p ...
. The dimension of this vector space is the number of pixels. The eigenvectors of the covariance matrix associated with a large set of normalized pictures of faces are called
eigenface An eigenface ( ) is the name given to a set of eigenvectors when used in the computer vision problem of human face recognition. The approach of using eigenfaces for recognition was developed by Sirovich and Kirby and used by Matthew Turk and ...
s; this is an example of
principal component analysis Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing. The data is linearly transformed onto a new coordinate system such that th ...
. They are very useful for expressing any face image as a
linear combination In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
of some of them. In the facial recognition branch of
biometrics Biometrics are body measurements and calculations related to human characteristics and features. Biometric authentication (or realistic authentication) is used in computer science as a form of identification and access control. It is also used t ...
, eigenfaces provide a means of applying
data compression In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compressi ...
to faces for identification purposes. Research related to eigen vision systems determining hand gestures has also been made. Similar to this concept, eigenvoices represent the general direction of variability in human pronunciations of a particular utterance, such as a word in a language. Based on a linear combination of such eigenvoices, a new voice pronunciation of the word can be constructed. These concepts have been found useful in automatic speech recognition systems for speaker adaptation.


See also

* Antieigenvalue theory * Eigenoperator * Eigenplane * Eigenmoments * Eigenvalue algorithm *
Quantum states In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system re ...
*
Jordan normal form \begin \lambda_1 1\hphantom\hphantom\\ \hphantom\lambda_1 1\hphantom\\ \hphantom\lambda_1\hphantom\\ \hphantom\lambda_2 1\hphantom\hphantom\\ \hphantom\hphantom\lambda_2\hphantom\\ \hphantom\lambda_3\hphantom\\ \hphantom\ddots\hphantom\\ ...
*
List of numerical-analysis software Listed here are notable end-user computer applications intended for use with numerical or data analysis: Numerical-software packages * Analytica is a widely used proprietary software tool for building and analyzing numerical models. It is a de ...
* Nonlinear eigenproblem *
Normal eigenvalue In mathematics, specifically in spectral theory, an eigenvalue of a closed linear operator is called normal if the space admits a decomposition into a direct sum of a finite-dimensional generalized eigenspace and an invariant subspace where A-\l ...
* Quadratic eigenvalue problem * Singular value * Spectrum of a matrix


Notes


Citations


Sources

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *


Further reading

* * * * *


External links


What are Eigen Values?
– non-technical introduction from PhysLink.com's "Ask the Experts"

– Tutorial and Interactive Program from Revoledu.
Introduction to Eigen Vectors and Eigen Values
– lecture from Khan Academy
Eigenvectors and eigenvalues , Essence of linear algebra, chapter 10
– A visual explanation with
3Blue1Brown 3Blue1Brown is a math YouTube channel created and run by Grant Sanderson. The channel focuses on teaching Higher Mathematics, higher mathematics from a visual perspective, and on the process of discovery and inquiry-based learning in mathematics, ...

Matrix Eigenvectors Calculator
from Symbolab (Click on the bottom right button of the 2×12 grid to select a matrix size. Select an n \times n size (for a square matrix), then fill out the entries numerically and click on the Go button. It can accept complex numbers as well.)


Theory





Edited by Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst {{DEFAULTSORT:Eigenvalues And Eigenvectors Abstract algebra Linear algebra Mathematical physics Matrix theory Singular value decomposition