HOME

TheInfoList



OR:

Gene targeting is a biotechnological tool used to change the
DNA sequence A nucleic acid sequence is a succession of bases within the nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. This succession is denoted by a series of a set of five different letters that indicate the order of the nu ...
of an organism (hence it is a form of
Genome Editing Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly insert ge ...
). It is based on the natural DNA-repair mechanism of
Homology Directed Repair Homology-directed repair (HDR) is a mechanism in cells to repair double-strand DNA lesions. The most common form of HDR is homologous recombination. The HDR mechanism can only be used by the cell when there is a homologous piece of DNA presen ...
(HDR), including
Homologous Recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...
. Gene targeting can be used to make a range of sizes of DNA edits, from larger DNA edits such as inserting entire new genes into an organism, through to much smaller changes to the existing DNA such as a single base-pair change. Gene targeting relies on the presence of a repair template to introduce the user-defined edits to the DNA. The user (usually a scientist) will design the repair template to contain the desired edit, flanked by DNA sequence corresponding (homologous) to the region of DNA that the user wants to edit; hence the edit is ''targeted'' to a particular genomic region. In this way Gene Targeting is distinct from natural homology-directed repair, during which the ‘natural’ DNA repair template of the sister chromatid is used to repair broken DNA (the sister chromatid is the second copy of the gene). The alteration of DNA sequence in an organism can be useful in both a research context – for example to understand the biological role of a gene – and in biotechnology, for example to alter the traits of an organism (e.g. to improve crop plants).


Methods

To create a gene-targeted organism, DNA must be introduced into its cells. This DNA must contain all of the parts necessary to complete the gene targeting. At a minimum this is the homology repair template, containing the desired edit flanked by regions of DNA homologous (identical in sequence to) the targeted region (these homologous regions are called “homology arms” ). Often a
reporter gene Reporter genes are molecular tools widely used in molecular biology, genetics, and biotechnology to study gene function, expression patterns, and regulatory mechanisms. These genes encode proteins that produce easily detectable signals, such as ...
and/or a
selectable marker A selectable marker is a gene introduced into cell (biology), cells, especially bacteria or cells in cell culture, culture, which confers one or more traits suitable for artificial selection. They are a type of reporter gene used in laboratory micr ...
is also required, to help identify and select for cells (or “events”) where GT has actually occurred. It is also common practice to increase GT rates by causing a double-strand-break (DSB) in the targeted DNA region. Hence the genes encoding for the site-specific-nuclease of interest may also be transformed along with the repair template. These genetic elements required for GT may be assembled through conventional
molecular cloning Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their DNA replication, replication within Host (biology), host organisms. The use of the word ''cloning'' re ...
in bacteria. Gene targeting methods are established for several
model organism A model organism is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the workings of other organisms. Mo ...
s and may vary depending on the
species A species () is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of Taxonomy (biology), ...
used. To target genes in
mice A mouse (: mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus' ...
, the DNA is inserted into mouse
embryonic stem cell Embryonic stem cells (ESCs) are Cell potency#Pluripotency, pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-Implantation (human embryo), implantation embryo. Human embryos reach the blastocyst stage 4� ...
s in culture. Cells with the insertion can contribute to a mouse's tissue via
embryo An embryo ( ) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sp ...
injection. Finally, chimeric mice where the modified cells make up the reproductive organs are bred. After this step the entire body of the mouse is based on the selected embryonic stem cell. To target genes in
moss Mosses are small, non-vascular plant, non-vascular flowerless plants in the taxonomic phylum, division Bryophyta (, ) ''sensu stricto''. Bryophyta (''sensu lato'', Wilhelm Philippe Schimper, Schimp. 1879) may also refer to the parent group bryo ...
, the DNA is incubated together with freshly isolated
protoplast Protoplast (), is a biology, biological term coined by Johannes von Hanstein, Hanstein in 1880 to refer to the entire cell, excluding the cell wall. Protoplasts can be generated by stripping the cell wall from plant, bacterium, bacterial, or f ...
s and with
polyethylene glycol Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular wei ...
. As mosses are
haploid Ploidy () is the number of complete sets of chromosomes in a cell (biology), cell, and hence the number of possible alleles for Autosome, autosomal and Pseudoautosomal region, pseudoautosomal genes. Here ''sets of chromosomes'' refers to the num ...
organisms,
moss Mosses are small, non-vascular plant, non-vascular flowerless plants in the taxonomic phylum, division Bryophyta (, ) ''sensu stricto''. Bryophyta (''sensu lato'', Wilhelm Philippe Schimper, Schimp. 1879) may also refer to the parent group bryo ...
filaments ( protonema) can be directly screened for the target, either by treatment with
antibiotic An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting pathogenic bacteria, bacterial infections, and antibiotic medications are widely used in the therapy ...
s or with PCR. Unique among
plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s, this procedure for
reverse genetics Reverse genetics is a method in molecular genetics that is used to help understand the function(s) of a gene by analysing the phenotypic effects caused by genetically engineering specific nucleic acid sequences within the gene. The process proce ...
is as efficient as in
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom (biology), kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are est ...
. Gene targeting has been successfully applied to cattle, sheep, swine and many fungi. The frequency of gene targeting can be significantly enhanced through the use of site-specific
endonuclease In molecular biology, endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain (namely DNA or RNA). Some, such as deoxyribonuclease I, cut DNA relatively nonspecifically (with regard to sequence), while man ...
s such as
zinc finger nuclease Zinc-finger nucleases (ZFNs) are artificial restriction enzymes generated by fusing a zinc finger DNA-binding domain to a nuclease, DNA-cleavage domain. Zinc finger domains can be engineered to target specific desired DNA sequences and this enab ...
s, engineered
homing endonuclease The homing endonucleases are a collection of endonucleases encoded either as freestanding genes within introns, as fusions with host proteins, or as self-splicing inteins. They catalyze the hydrolysis of genomic DNA within the cells that synthes ...
s, TALENS, or most commonly the
CRISPR CRISPR (; acronym of clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. Each sequence within an individual prokaryotic CRISPR is d ...
-Cas system. This method has been applied to species including
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (an insect of the Order (biology), order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly", "pomace fly" ...
,
tobacco Tobacco is the common name of several plants in the genus '' Nicotiana'' of the family Solanaceae, and the general term for any product prepared from the cured leaves of these plants. More than 70 species of tobacco are known, but the ...
,
corn Maize (; ''Zea mays''), also known as corn in North American English, is a tall stout Poaceae, grass that produces cereal grain. It was domesticated by indigenous peoples of Mexico, indigenous peoples in southern Mexico about 9,000 years ago ...
,
human Humans (''Homo sapiens'') or modern humans are the most common and widespread species of primate, and the last surviving species of the genus ''Homo''. They are Hominidae, great apes characterized by their Prehistory of nakedness and clothing ...
cells,
mice A mouse (: mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus' ...
and
rat Rats are various medium-sized, long-tailed rodents. Species of rats are found throughout the order Rodentia, but stereotypical rats are found in the genus ''Rattus''. Other rat genera include '' Neotoma'' (pack rats), '' Bandicota'' (bandicoo ...
s.


Comparison to other forms of genetic engineering

The relationship between gene targeting, gene editing and genetic modification is outlined in the Venn diagram below. It displays how 'Genetic engineering' encompasses all 3 of these techniques. Genome editing is characterised by making small edits to the genome at a specific location, often following cutting of the target DNA region by a site-specific-nuclease such as CRISPR. Genetic modification usually describes the insertion of a transgene (foreign DNA, i.e. a gene from another species) into a random location within the genome. Gene-targeting is a specific biotechnological tool that can lead to small changes to the genome at a specific site - in which case the edits caused by gene-targeting would count as genome editing. However gene targeting is also capable of inserting entire genes (such as transgenes) at the target site if the transgene is incorporated into the homology repair template that is used during gene-targeting. In such cases the edits caused by gene-targeting would, in some jurisdictions, be considered as equivalent to Genetic Modification as insertion of foreign DNA has occurred. Gene targeting is one specific form of
genome editing Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly insert ge ...
tool. Other genome editing tools include targeted mutagenesis, base editing and prime editing, all of which create edits to the endogenous DNA (DNA already present in the organism) at a specific genomic location. This site-specific or ‘targeted’ nature of genome editing is typically what makes genome-editing different to traditional ‘genetic modification’ which inserts a
transgene A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the ...
at a non-specific location in the organisms' genome, as well as gene-editing making small edits to the DNA already present in the organisms, verses genetic modification insertion 'foreign' DNA from another species. Because gene editing makes smaller changes to endogenous DNA, many mutations created through genome-editing could in theory occur through natural mutagenesis or, in the context of plants, through
mutation breeding Mutation breeding, sometimes referred to as "variation breeding", is the process of exposing seeds to chemicals, radiation, or enzymes in order to generate mutants with desirable traits to be bred with other cultivars. Plants created using mutagen ...
which is part of conventional breeding (in contrast the insertion of a transgene to create a Genetically Modified Organism (GMO) could not occur naturally). However, there are exceptions to this general rule; as explained in the introduction, GT can introduce a range of possible size of edits to DNA; from very small edits such as changing, inserting or deleting 1 base-pair, through to inserting much longer DNA sequences, which could in theory include insertion of an entire transgene. However, in practice GT is more commonly used to insert smaller sequences. The range of edits possible through GT can make it challenging to regulate (see
Regulation Regulation is the management of complex systems according to a set of rules and trends. In systems theory, these types of rules exist in various fields of biology and society, but the term has slightly different meanings according to context. Fo ...
). The two most established forms of gene editing are gene-targeting and targeted-mutagenesis. While gene targeting relies on the
Homology Directed Repair Homology-directed repair (HDR) is a mechanism in cells to repair double-strand DNA lesions. The most common form of HDR is homologous recombination. The HDR mechanism can only be used by the cell when there is a homologous piece of DNA presen ...
(HDR) (also called
Homologous Recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...
, HR) DNA repair pathway, targeted-mutagenesis uses Non-Homologous-End-Joining (NHEJ) of broken DNA. NHEJ is an error-prone DNA repair pathway, meaning that when it repairs the broken DNA it can insert or delete DNA bases, creating insertions or deletions (indels). The user cannot specify what these random indels will be, hence they cannot control exactly what edits are made at the target site. However they can control where these edits will occur (i.e. dictate the target site) through using a site-specific nuclease (previously Zinc Finger Nucleases & TALENs, now commonly
CRISPR CRISPR (; acronym of clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. Each sequence within an individual prokaryotic CRISPR is d ...
) to break the DNA at the target site. A summary of gene-targeting through HDR (also called Homologous Recombination) and targeted mutagenesis through NHEJ is shown in the figure below. The more newly developed gene-editing techniques of prime editing and base editing, based on CRISPR-Cas methods, are alternatives to gene targeting, which can also create user-defined edits at targeted genomic locations. However each is limited in the length of DNA sequence insertion possible; base editing is limited to single base pair conversions while prime editing can only insert sequences of up to ~44bp. Hence GT remains the primary method of targeted (location-specific) insertion of long DNA sequences for genome engineering.  


Comparison with gene trapping

Gene trapping is based on random insertion of a cassette, while gene targeting manipulates a specific gene. Cassettes can be used for many different things while the flanking homology regions of gene targeting cassettes need to be adapted for each gene. This makes gene trapping more easily amenable for large scale projects than targeting. On the other hand, gene targeting can be used for genes with low transcriptions that would go undetected in a trap screen. The probability of trapping increases with
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e., a region inside a gene."The notion of the cistron .e., gen ...
size, while for gene targeting, small genes are just as easily altered.


Applications


Applications in mammalian systems

Gene targeting was developed in mammalian cells in the 1980s, with diverse applications possible as a result of being able to make specific sequence changes at a target genomic site, such as the study of gene function or human disease, particularly in mice models. Indeed, gene targeting has been widely used to study human genetic diseases by removing (" knocking out"), or adding (" knocking in"), specific mutations of interest. Previously used to engineer rat cell models, advances in gene targeting technologies enable a new wave of isogenic human disease models. These models are the most accurate
in vitro ''In vitro'' (meaning ''in glass'', or ''in the glass'') Research, studies are performed with Cell (biology), cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in ...
models available to researchers and facilitate the development of personalized drugs and diagnostics, particularly in
oncology Oncology is a branch of medicine that deals with the study, treatment, diagnosis, and prevention of cancer. A medical professional who practices oncology is an ''oncologist''. The name's Etymology, etymological origin is the Greek word ὄγ ...
. Gene targeting has also been investigated for
gene therapy Gene therapy is Health technology, medical technology that aims to produce a therapeutic effect through the manipulation of gene expression or through altering the biological properties of living cells. The first attempt at modifying human DNA ...
to correct disease-causing mutations. However the low efficiency of delivery of the gene-targeting machinery into cells has hindered this, with research conducted into viral vectors for gene targeting to try and address these challenges.


Applications in yeast and moss

Gene targeting is relatively high efficiency in yeast, bacterial and moss (but is rare in higher eukaryotes). Hence gene targeting has been used in reverse genetics approaches to study gene function in these systems.


Applications in plant genome engineering

Gene targeting (GT), or homology-directed repair (HDR), is used routinely in plant genome engineering to insert specific sequences, with the first published example of GT in plants in the 1980s. However, gene targeting is particularly challenging in higher plants due to the low rates of Homologous Recombination, or Homology Directed Repair, in higher plants and the low rate of transformation (DNA uptake) by many plant species. However, there has been much effort to increase the frequencies of gene targeting in plants in the past decades, as it is very useful to be able to introduce specific sequences in the plant genome for plant genome engineering. The most significant improvement to gene targeting frequencies in plants was the induction of double-strand-breaks through site specific nucleases such as CRISPR, as described above. Other strategies include ''in planta'' gene targeting, whereby the homology repair template is embedded within the plant genome and then liberated using CRISPR cutting; upregulation of genes involved in the homologous recombination pathway; downregulation of the competing Non-Homologous-End-Joining pathway; increasing copy numbers of the homologous repair template; and engineering Cas variants to be optimised for plant tissue culture. Some of these approaches have also been used to improve gene targeting efficiencies in mammalian cells. Plants that have been gene-targeted include
Arabidopsis thaliana ''Arabidopsis thaliana'', the thale cress, mouse-ear cress or arabidopsis, is a small plant from the mustard family (Brassicaceae), native to Eurasia and Africa. Commonly found along the shoulders of roads and in disturbed land, it is generally ...
(the most commonly used model plant), rice, tomato, maize, tobacco and wheat.


Technical challenges

Gene targeting holds enormous promise to make targeted, user-defined sequence changes or sequence insertions in the genome. However its primary applications - human disease modelling and plant genome engineering - are hindered by the low efficiency of homologous recombination in comparison to the competing non-homologous end joining in mammalian and higher plant cells. As described above, there are strategies that can be employed to increase the frequencies of gene targeting in plants and mammalian cells. In addition, robust selection methods that allow the selection or specific enrichment of cells where gene targeting has occurred can increase the rates of recovery of gene-targeted cells.


2007 Nobel Prize

Mario R. Capecchi, Martin J. Evans and
Oliver Smithies Oliver Smithies (23 June 1925 – 10 January 2017) was a British-American geneticist and physical biochemist. He is known for introducing starch as a medium for gel electrophoresis in 1955, and for the discovery, simultaneously with Mario Cap ...
were awarded the 2007
Nobel Prize in Physiology or Medicine The Nobel Prize in Physiology or Medicine () is awarded yearly by the Nobel Assembly at the Karolinska Institute for outstanding discoveries in physiology or medicine. The Nobel Prize is not a single prize, but five separate prizes that, acco ...
for their work on "principles for introducing specific gene modifications in mice by the use of embryonic stem cells", or gene targeting.


Regulation of Gene Targeted organisms

As explained above, Gene Targeting is technically capable of creating a range of sizes of genetic changes; from single base-pair mutations through to insertion of longer sequences, including potentially transgenes. This means that products of gene targeting can be indistinguishable from natural mutation, or can be equivalent to GMOs due to their insertion of a transgene (see Venn diagram above). Hence regulating products of Gene Targeting can be challenging and different countries have taken different approaches or are reviewing how to do so as part of broader regulatory reviews into the products of gene-editing. Broadly adopted classifications split gene-edited organisms into 3 classes of "SDN1-3", referring to Site Directed Nucleases (such as CRISPR-Cas) that are used to generate gene-edited organisms. These SDN classifications can guide national regulations as to which class of SDN they will consider to be ‘GMOs’ and therefore which are subject to potentially strict regulations.  * SDN1 = organisms created through Non-homologous End Joining of an SDN-catalysed break in the DNA. Hence random mutations have occurred through the error prone NHEJ, and no repair template has been used (hence is not Gene-Targeting). Often subject to less stringent regulatory oversight due to the lack of use of a DNA repair template and equivalence to conventional breeding techniques (in the case of plant breeding). * SDN2 = one or several specific mutations have been introduced into the target gene at the SDN cut-site through use of a homology-repair template (hence this is Gene Targeting). * SDN3 = longer sequences have been inserted at the cut-site, via homologous recombination (i.e. Gene Targeting) or through NHEJ. "Longer sequences" typically refer to entire genetic elements such as promoters or protein-coding regions. These are often considered transgenic and therefore often classed as GMO. Historically the
European Union The European Union (EU) is a supranational union, supranational political union, political and economic union of Member state of the European Union, member states that are Geography of the European Union, located primarily in Europe. The u ...
(EU) has broadly been opposed to Genetic Modification technology, on grounds of its
precautionary principle The precautionary principle (or precautionary approach) is a broad epistemological, philosophical and legal approach to innovations with potential for causing harm when extensive scientific knowledge on the matter is lacking. It emphasizes cautio ...
. In 2018 the
European Court of Justice The European Court of Justice (ECJ), officially the Court of Justice (), is the supreme court of the European Union in matters of European Union law. As a part of the Court of Justice of the European Union, it is tasked with interpreting ...
(ECJ) ruled that gene-edited crops (including gene-targeted crops) should be considered as genetically modified and therefore were subject to the GMO Directive, which places significant regulatory burdens on GMO use. However this decision was received negatively by the European scientific community. In 2021 the
European Commission The European Commission (EC) is the primary Executive (government), executive arm of the European Union (EU). It operates as a cabinet government, with a number of European Commissioner, members of the Commission (directorial system, informall ...
deemed that current EU legislation governing Genetic Modification and Gene-Editing techniques (or NGTs – New Genomic Techniques) was ‘not fit for purpose’ and needed adapting to reflect scientific and technological progress. In July 2023 the European Commission published a proposal to change rules for certain products of gene-editing to reduce the regulatory requirements for organisms developed with gene-editing that contained genetic changes that could have occurred naturally.


See also

* Cre recombinase * Cre-Lox recombination * FLP-FRT recombination *
Genetic recombination Genetic recombination (also known as genetic reshuffling) is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryot ...
* Recombinase-mediated cassette exchange (exchange of a preexisting "gene cassette" for a "gene of interest") * Regulation of genetic engineering *
Site-specific recombinase technology Site-specific recombinase technologies are genome engineering tools that depend on Recombinase, recombinase enzymes to replace targeted sections of DNA. History In the late 1980s gene targeting in murine embryonic stem cells (ESCs) enabled the ...
*
Toll-like receptor Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are single-pass membrane protein, single-spanning receptor (biochemistry), receptors usually expressed on sentinel cells such as macrophages ...
(example of a gene targeted for analysis) *
Mus musculus The house mouse (''Mus musculus'') is a small mammal of the rodent family Muridae, characteristically having a pointed snout, large rounded ears, and a long and almost hairless tail. It is one of the most abundant species of the genus ''Mus (genu ...
(house mouse; common model organism) * ''
Physcomitrella patens ''Physcomitrella patens'' is a synonym of ''Physcomitrium patens'', the spreading earthmoss. It is a moss, a bryophyte used as a model organism for studies on plant evolution, development, and physiology. Distribution and ecology ''Physcomitr ...
'' (only plant in which gene targeting is available, as of 1998)


References


External links


Outline of gene targeting
by the University of Michigan

by Heydari lab, Wayne State University
Research highlights on reporter genes
used in gene targeting

{{DEFAULTSORT:Gene Targeting Molecular biology Genetic engineering Genetics techniques Biological engineering Genetically modified organisms