Frenkel line
   HOME

TheInfoList



OR:

In fluid dynamics, the Frenkel line is a proposed boundary on the phase diagram of a supercritical fluid, separating regions of qualitatively different behavior. Fluids on opposite sides of the line have been described as "liquidlike" or "gaslike", and exhibit different behaviors in terms of
oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
, excitation modes, and
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
.


Overview

Two types of approaches to the behavior of liquids are present in the literature. The most common one is based on a van der Waals model. It treats the liquids as dense structureless gases. Although this approach allows explanation of many principal features of fluids, in particular the liquid-gas
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...
, it fails to explain other important issues such as, for example, the existence in liquids of transverse collective excitations such as
phonons In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanic ...
. Another approach to fluid properties was proposed by
Yakov Frenkel __NOTOC__ Yakov Il'ich Frenkel (russian: Яков Ильич Френкель; 10 February 1894 – 23 January 1952) was a Soviet physicist renowned for his works in the field of condensed matter physics. He is also known as Jacov Frenkel, frequ ...
. It is based on the assumption that at moderate
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
s, the particles of liquid behave in a manner similar to a crystal, ''i.e.'' the particles demonstrate oscillatory motions. However, while in crystals they oscillate around their nodes, in liquids, after several periods, the particles change their nodes. This approach is based on postulation of some similarity between crystals and liquids, providing insight into many important properties of the latter: transverse collective excitations, large
heat capacity Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity ...
, and so on. From the discussion above, one can see that the microscopic behavior of particles of moderate and high temperature fluids is qualitatively different. If one
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
s a fluid from a temperature close to the
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
to some high temperature, a crossover from the solid-like to the gas-like regime occurs. The line of this crossover was named the Frenkel line, after Yakov Frenkel. Several methods to locate the Frenkel line are proposed in the literature. The exact criterion defining the Frenkel line is the one based on a comparison of characteristic times in fluids. One can define a 'jump time' via : \tau_0=\frac , where a is the size of the particle and D is the
diffusion coefficient Diffusivity, mass diffusivity or diffusion coefficient is a proportionality constant between the molar flux due to molecular diffusion and the gradient in the concentration of the species (or the driving force for diffusion). Diffusivity is enco ...
. This is the time necessary for a particle to move a distance comparable to its own size. The second characteristic time corresponds to the shortest period of transverse oscillations of particles within the fluid, \tau^* . When these two time scales are roughly equal, one cannot distinguish between the oscillations of the particles and their jumps to another position. Thus the criterion for the Frenkel line is given by \tau_0 \approx \tau^* . There exist several approximate criteria to locate the Frenkel line on the pressure-temperature plane. One of these criteria is based on the velocity autocorrelation function (vacf): below the Frenkel line, the vacf demonstrates oscillatory behaviour, while above it, the vacf monotonically decays to zero. The second criterion is based on the fact that at moderate temperatures, liquids can sustain transverse excitations, which disappear upon heating. One further criterion is based on isochoric heat capacity measurements. The isochoric heat capacity per particle of a monatomic liquid near the melting line is close to 3 k_B (where k_B is the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, ...
). The contribution to the heat capacity due to the potential part of transverse excitations is 1 k_B . Therefore, at the Frenkel line, where transverse excitations vanish, the isochoric heat capacity per particle should be c_V=2 k_B , a direct prediction from the phonon theory of liquid thermodynamics. Crossing the Frenkel line leads also to some structural crossovers in fluids. Currently Frenkel lines of several idealised liquids, such as
Lennard-Jones Sir John Edward Lennard-Jones (27 October 1894 – 1 November 1954) was a British mathematician and professor of theoretical physics at the University of Bristol, and then of theoretical science at the University of Cambridge. He was an im ...
and soft spheres, as well as realistic models such as liquid
iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
,
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
,
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
, and
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
,Dima Bolmatov, D. Zav’yalov, M. Gao, and Mikhail Zhernenkov "Evidence for structural crossover in the supercritical state", Journal of Physical Chemistry 5 pp 2785-2790 (2014)
/ref> have been reported in the literature.


See also

* Fisher–Widom line


References

Statistical mechanics