HOME

TheInfoList



OR:

A vacuum (: vacuums or vacua) is
space Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
devoid of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
much less than
atmospheric pressure Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1,013. ...
. Physicists often discuss ideal test results that would occur in a ''perfect'' vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a
laboratory A laboratory (; ; colloquially lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurement may be performed. Laboratories are found in a variety of settings such as schools ...
or in
space Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term ''in vacuo'' is used to describe an object that is surrounded by a vacuum. The ''quality'' of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
means higher-quality vacuum. For example, a typical
vacuum cleaner A vacuum cleaner, also known simply as a vacuum, is a device that uses suction, and often agitation, in order to remove dirt and other debris from carpets, hard floors, and other surfaces. The dirt is collected into a dust bag or a plastic bin. ...
produces enough suction to reduce air pressure by around 20%. But higher-quality vacuums are possible. Ultra-high vacuum chambers, common in chemistry, physics, and engineering, operate below one trillionth (10−12) of atmospheric pressure (100 nPa), and can reach around 100 particles/cm3. Outer space is an even higher-quality vacuum, with the equivalent of just a few hydrogen atoms per cubic meter on average in intergalactic space. This source estimates a density of for the Local Group. A dalton is , for roughly 40 atoms per cubic meter. Vacuum has been a frequent topic of philosophical debate since ancient Greek times, but was not studied empirically until the 17th century. Clemens Timpler (1605) philosophized about the experimental possibility of producing a vacuum in small tubes.
Evangelista Torricelli Evangelista Torricelli ( ; ; 15 October 160825 October 1647) was an Italian people, Italian physicist and mathematician, and a student of Benedetto Castelli. He is best known for his invention of the barometer, but is also known for his advances i ...
produced the first laboratory vacuum in 1643, and other experimental techniques were developed as a result of his theories of atmospheric pressure. A Torricellian vacuum is created by filling with mercury a tall glass container closed at one end, and then inverting it in a bowl to contain the mercury (see below). Vacuum became a valuable industrial tool in the 20th century with the introduction of
incandescent light bulb An incandescent light bulb, also known as an incandescent lamp or incandescent light globe, is an electric light that produces illumination by Joule heating a #Filament, filament until it incandescence, glows. The filament is enclosed in a ...
s and
vacuum tube A vacuum tube, electron tube, thermionic valve (British usage), or tube (North America) is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. It ...
s, and a wide array of vacuum technologies has since become available. The development of
human spaceflight Human spaceflight (also referred to as manned spaceflight or crewed spaceflight) is spaceflight with a crew or passengers aboard a spacecraft, often with the spacecraft being operated directly by the onboard human crew. Spacecraft can also be ...
has raised interest in the impact of vacuum on human health, and on life forms in general.


Etymology

The word ''vacuum'' comes , noun use of neuter of ''vacuus'', meaning "empty", related to ''vacare'', meaning "to be empty". ''Vacuum'' is one of the few words in the English language that contains two consecutive instances of the vowel '' u''.


Historical understanding

Historically, there has been much dispute over whether such a thing as a vacuum can exist. Ancient
Greek philosophers Ancient Greek philosophy arose in the 6th century BC. Philosophy was used to make sense of the world using reason. It dealt with a wide variety of subjects, including astronomy, epistemology, mathematics, political philosophy, ethics, metaphysics ...
debated the existence of a vacuum, or void, in the context of
atomism Atomism () is a natural philosophy proposing that the physical universe is composed of fundamental indivisible components known as atoms. References to the concept of atomism and its Atom, atoms appeared in both Ancient Greek philosophy, ancien ...
, which posited void and atom as the fundamental explanatory elements of physics.
Lucretius Titus Lucretius Carus ( ; ;  – October 15, 55 BC) was a Roman poet and philosopher. His only known work is the philosophical poem '' De rerum natura'', a didactic work about the tenets and philosophy of Epicureanism, which usually is t ...
argued for the existence of vacuum in the first century BC and
Hero of Alexandria Hero of Alexandria (; , , also known as Heron of Alexandria ; probably 1st or 2nd century AD) was a Greek mathematician and engineer who was active in Alexandria in Egypt during the Roman era. He has been described as the greatest experimental ...
tried unsuccessfully to create an artificial vacuum in the first century AD. Following
Plato Plato ( ; Greek language, Greek: , ; born  BC, died 348/347 BC) was an ancient Greek philosopher of the Classical Greece, Classical period who is considered a foundational thinker in Western philosophy and an innovator of the writte ...
, however, even the abstract concept of a featureless void faced considerable skepticism: it could not be apprehended by the senses, it could not, itself, provide additional explanatory power beyond the physical volume with which it was commensurate and, by definition, it was quite literally nothing at all, which cannot rightly be said to exist.
Aristotle Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, a ...
believed that no void could occur naturally, because the denser surrounding material continuum would immediately fill any incipient rarity that might give rise to a void. In his ''
Physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
'', book IV, Aristotle offered numerous arguments against the void: for example, that motion through a medium which offered no impediment could continue ''ad infinitum'', there being no reason that something would come to rest anywhere in particular. In the medieval
Muslim world The terms Islamic world and Muslim world commonly refer to the Islamic community, which is also known as the Ummah. This consists of all those who adhere to the religious beliefs, politics, and laws of Islam or to societies in which Islam is ...
, the physicist and Islamic scholar
Al-Farabi file:A21-133 grande.webp, thumbnail, 200px, Postage stamp of the USSR, issued on the 1100th anniversary of the birth of Al-Farabi (1975) Abu Nasr Muhammad al-Farabi (; – 14 December 950–12 January 951), known in the Greek East and Latin West ...
wrote a treatise rejecting the existence of the vacuum in the 10th century. He concluded that air's volume can expand to fill available space, and therefore the concept of a perfect vacuum was incoherent. According to Ahmad Dallal, Abū Rayhān al-Bīrūnī states that "there is no observable evidence that rules out the possibility of vacuum". The suction
pump A pump is a device that moves fluids (liquids or gases), or sometimes Slurry, slurries, by mechanical action, typically converted from electrical energy into hydraulic or pneumatic energy. Mechanical pumps serve in a wide range of application ...
was described by Arab engineer Al-Jazari in the 13th century, and later appeared in Europe from the 15th century. Donald Routledge Hill, "Mechanical Engineering in the Medieval Near East", ''Scientific American'', May 1991, pp. 64–69 (
cf. The abbreviation cf. (short for either Latin or , both meaning 'compare') is generally used in writing to refer the reader to other material to make a comparison with the topic being discussed. However some sources offer differing or even contr ...
Donald Routledge Hill
Mechanical Engineering
).
European scholars such as
Roger Bacon Roger Bacon (; or ', also '' Rogerus''; ), also known by the Scholastic accolades, scholastic accolade ''Doctor Mirabilis'', was a medieval English polymath, philosopher, scientist, theologian and Franciscans, Franciscan friar who placed co ...
, Blasius of Parma and Walter Burley in the 13th and 14th century focused considerable attention on issues concerning the concept of a vacuum. The commonly held view that nature abhorred a vacuum was called '' horror vacui''. There was even speculation that even God could not create a vacuum if he wanted and the 1277 Paris condemnations of
Bishop A bishop is an ordained member of the clergy who is entrusted with a position of Episcopal polity, authority and oversight in a religious institution. In Christianity, bishops are normally responsible for the governance and administration of di ...
Étienne Tempier Étienne Tempier (; also known as Stephanus of Orleans; died 3 September 1279) was a French bishop of Paris during the 13th century. He was Chancellor of the University of Paris, Chancellor of the University of Paris, Sorbonne from 1263 to 1268, ...
, which required there to be no restrictions on the powers of God, led to the conclusion that God could create a vacuum if he so wished. From the 14th century onward increasingly departed from the Aristotelian perspective, scholars widely acknowledged that a
supernatural Supernatural phenomena or entities are those beyond the Scientific law, laws of nature. The term is derived from Medieval Latin , from Latin 'above, beyond, outside of' + 'nature'. Although the corollary term "nature" has had multiple meanin ...
void exists beyond the confines of the cosmos itself by the 17th century. This idea, influenced by
Stoic physics Stoicism is a school of Hellenistic philosophy that flourished in ancient Greece and Rome. The Stoics believed that the universe operated according to reason, ''i.e.'' by a God which is immersed in nature itself. Of all the schools of ancient ...
, helped to segregate natural and theological concerns. Almost two thousand years after Plato,
René Descartes René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramou ...
also proposed a geometrically based alternative theory of atomism, without the problematic nothing–everything
dichotomy A dichotomy () is a partition of a set, partition of a whole (or a set) into two parts (subsets). In other words, this couple of parts must be * jointly exhaustive: everything must belong to one part or the other, and * mutually exclusive: nothi ...
of void and atom. Although Descartes agreed with the contemporary position, that a vacuum does not occur in nature, the success of his namesake coordinate system and more implicitly, the spatial–corporeal component of his metaphysics would come to define the philosophically modern notion of empty space as a quantified extension of volume. By the ancient definition however, directional information and magnitude were conceptually distinct. Medieval
thought experiment A thought experiment is an imaginary scenario that is meant to elucidate or test an argument or theory. It is often an experiment that would be hard, impossible, or unethical to actually perform. It can also be an abstract hypothetical that is ...
s into the idea of a vacuum considered whether a vacuum was present, if only for an instant, between two flat plates when they were rapidly separated. There was much discussion of whether the air moved in quickly enough as the plates were separated, or, as Walter Burley postulated, whether a 'celestial agent' prevented the vacuum arising. Jean Buridan reported in the 14th century that teams of ten horses could not pull open bellows when the port was sealed. The 17th century saw the first attempts to quantify measurements of partial vacuum.
Evangelista Torricelli Evangelista Torricelli ( ; ; 15 October 160825 October 1647) was an Italian people, Italian physicist and mathematician, and a student of Benedetto Castelli. He is best known for his invention of the barometer, but is also known for his advances i ...
's mercury
barometer A barometer is a scientific instrument that is used to measure air pressure in a certain environment. Pressure tendency can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis ...
of 1643 and
Blaise Pascal Blaise Pascal (19June 162319August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic Church, Catholic writer. Pascal was a child prodigy who was educated by his father, a tax collector in Rouen. His earliest ...
's experiments both demonstrated a partial vacuum. In 1654,
Otto von Guericke Otto von Guericke ( , , ; spelled Gericke until 1666; – ) was a German scientist, inventor, mathematician and physicist. His pioneering scientific work, the development of experimental methods and repeatable demonstrations on the physics of ...
invented the first
vacuum pump A vacuum pump is a type of pump device that draws gas particles from a sealed volume in order to leave behind a partial vacuum. The first vacuum pump was invented in 1650 by Otto von Guericke, and was preceded by the suction pump, which dates to ...
and conducted his famous Magdeburg hemispheres experiment, showing that, owing to atmospheric pressure outside the hemispheres, teams of horses could not separate two hemispheres from which the air had been partially evacuated. Robert Boyle improved Guericke's design and with the help of
Robert Hooke Robert Hooke (; 18 July 16353 March 1703) was an English polymath who was active as a physicist ("natural philosopher"), astronomer, geologist, meteorologist, and architect. He is credited as one of the first scientists to investigate living ...
further developed vacuum pump technology. Thereafter, research into the partial vacuum lapsed until 1850 when August Toepler invented the Toepler pump and in 1855 when Heinrich Geissler invented the mercury displacement pump, achieving a partial vacuum of about 10 Pa (0.1 
Torr The torr (symbol: Torr) is a Pressure#Units, unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (unit), atmosphere (101325 Pa). Thus one torr is exactly (≈ ). Historically, one torr was intended to be ...
). A number of electrical properties become observable at this vacuum level, which renewed interest in further research. While outer space provides the most rarefied example of a naturally occurring partial vacuum, the heavens were originally thought to be seamlessly filled by a rigid indestructible material called aether. Borrowing somewhat from the
pneuma ''Pneuma'' () is an ancient Greek word for "breathing, breath", and in a religious context for "spirit (animating force), spirit". It has various technical meanings for medical writers and philosophers of classical antiquity, particularly in rega ...
of
Stoic physics Stoicism is a school of Hellenistic philosophy that flourished in ancient Greece and Rome. The Stoics believed that the universe operated according to reason, ''i.e.'' by a God which is immersed in nature itself. Of all the schools of ancient ...
, aether came to be regarded as the rarefied air from which it took its name, (see Aether (mythology)). Early theories of light posited a ubiquitous terrestrial and celestial medium through which light propagated. Additionally, the concept informed
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
's explanations of both
refraction In physics, refraction is the redirection of a wave as it passes from one transmission medium, medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commo ...
and of radiant heat. 19th century experiments into this
luminiferous aether Luminiferous aether or ether (''luminiferous'' meaning 'light-bearing') was the postulated Transmission medium, medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empt ...
attempted to detect a minute drag on the Earth's orbit. While the Earth does, in fact, move through a relatively dense medium in comparison to that of interstellar space, the drag is so minuscule that it could not be detected. In 1912,
astronomer An astronomer is a scientist in the field of astronomy who focuses on a specific question or field outside the scope of Earth. Astronomers observe astronomical objects, such as stars, planets, natural satellite, moons, comets and galaxy, galax ...
Henry Pickering commented: "While the interstellar absorbing medium may be simply the ether, tis characteristic of a gas, and free gaseous molecules are certainly there". Thereafter, however, luminiferous aether was discarded. Later, in 1930,
Paul Dirac Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
proposed a model of the vacuum as an infinite sea of particles possessing negative energy, called the Dirac sea. This theory helped refine the predictions of his earlier formulated
Dirac equation In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
, and successfully predicted the existence of the
positron The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
, confirmed two years later.
Werner Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
's
uncertainty principle The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
, formulated in 1927, predicted a fundamental limit within which instantaneous position and
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
, or energy and time can be measured. This far reaching consequences also threatened whether the "emptiness" of space between particles exists.


Classical field theories

The strictest criterion to define a vacuum is a region of space and time where all the components of the stress–energy tensor are zero. This means that this region is devoid of energy and momentum, and by consequence, it must be empty of particles and other physical fields (such as electromagnetism) that contain energy and momentum.


Gravity

In
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, a vanishing stress–energy tensor implies, through
Einstein field equations In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it. ...
, the vanishing of all the components of the Ricci tensor. Vacuum does not mean that the curvature of
space-time In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three-dimensional space, three dimensions of space and the one dimension of time into a single four-dimensional continuum (measurement), continu ...
is necessarily flat: the gravitational field can still produce curvature in a vacuum in the form of tidal forces and
gravitational wave Gravitational waves are oscillations of the gravitational field that Wave propagation, travel through space at the speed of light; they are generated by the relative motion of gravity, gravitating masses. They were proposed by Oliver Heaviside i ...
s (technically, these phenomena are the components of the Weyl tensor). The
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
(with zero electric charge) is an elegant example of a region completely "filled" with vacuum, but still showing a strong curvature.


Electromagnetism

In classical electromagnetism, the vacuum of free space, or sometimes just ''free space'' or ''perfect vacuum'', is a standard reference medium for electromagnetic effects. Some authors refer to this reference medium as ''classical vacuum'', a terminology intended to separate this concept from QED vacuum or QCD vacuum, where vacuum fluctuations can produce transient
virtual particle A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emer ...
densities and a
relative permittivity The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the vacuum permittivity, electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric co ...
and relative permeability that are not identically unity.For a qualitative description of vacuum fluctuations and virtual particles, see The relative permeability and permittivity of field-theoretic vacuums is described in and more recently in and also QCD vacuum is paramagnetic, while QED vacuum is
diamagnetic Diamagnetism is the property of materials that are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagn ...
. See
In the theory of classical electromagnetism, free space has the following properties: * Electromagnetic radiation travels, when unobstructed, at the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
, the defined value 299,792,458 m/s in
SI units The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official st ...
. * The
superposition principle The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So th ...
is always exactly true. For example, the electric potential generated by two charges is the simple addition of the potentials generated by each charge in isolation. The value of the
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
at any point around these two charges is found by calculating the
vector Vector most often refers to: * Euclidean vector, a quantity with a magnitude and a direction * Disease vector, an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematics a ...
sum of the two electric fields from each of the charges acting alone. * The
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more ...
and permeability are exactly the electric constant and magnetic constant , respectively (in
SI units The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official st ...
), or exactly 1 (in
Gaussian units Gaussian units constitute a metric system of units of measurement. This system is the most common of the several electromagnetic unit systems based on the centimetre–gram–second system of units (CGS). It is also called the Gaussian unit syst ...
). * The
characteristic impedance The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a wave travelling in one direction along the line in the absence of reflections in th ...
() equals the impedance of free space ≈ 376.73 Ω. The vacuum of classical electromagnetism can be viewed as an idealized electromagnetic medium with the constitutive relations in SI units: : \boldsymbol D(\boldsymbol r,\ t) = \varepsilon_0 \boldsymbol E(\boldsymbol r,\ t)\, : \boldsymbol H(\boldsymbol r,\ t) = \frac \boldsymbol B(\boldsymbol r,\ t)\, relating the electric displacement field to the
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
and the
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
or ''H''-field to the magnetic induction or ''B''-field . Here is a spatial location and is time.


Quantum mechanics

In
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
and
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, the vacuum is defined as the state (that is, the solution to the equations of the theory) with the lowest possible energy (the ground state of the
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
). In
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
this vacuum is referred to as ' QED vacuum' to distinguish it from the vacuum of
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
, denoted as QCD vacuum. QED vacuum is a state with no matter particles (hence the name), and no
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s. As described above, this state is impossible to achieve experimentally. (Even if every matter particle could somehow be removed from a volume, it would be impossible to eliminate all the blackbody photons.) Nonetheless, it provides a good model for realizable vacuum, and agrees with a number of experimental observations as described next. QED vacuum has interesting and complex properties. In QED vacuum, the electric and magnetic fields have zero average values, but their variances are not zero.For example, see As a result, QED vacuum contains vacuum fluctuations ( virtual particles that hop into and out of existence), and a finite energy called vacuum energy. Vacuum fluctuations are an essential and ubiquitous part of quantum field theory. Some experimentally verified effects of vacuum fluctuations include
spontaneous emission Spontaneous emission is the process in which a Quantum mechanics, quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited state, excited energy state to a lower energy state (e.g., its ground state ...
and the
Lamb shift In physics, the Lamb shift, named after Willis Lamb, is an anomalous difference in energy between two electron orbitals in a hydrogen atom. The difference was not predicted by theory and it cannot be derived from the Dirac equation, which pre ...
.
Coulomb's law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental scientific law, law of physics that calculates the amount of force (physics), force between two electric charge, electrically charged particles at rest. This electric for ...
and the
electric potential Electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as electric potential energy per unit of electric charge. More precisely, electric potential is the amount of work (physic ...
in vacuum near an electric charge are modified.In effect, the dielectric permittivity of the vacuum of classical electromagnetism is changed. For example, see Theoretically, in QCD multiple vacuum states can coexist. The starting and ending of cosmological inflation is thought to have arisen from transitions between different vacuum states. For theories obtained by quantization of a classical theory, each
stationary point In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of a function, graph of the function where the function's derivative is zero. Informally, it is a point where the ...
of the energy in the configuration space gives rise to a single vacuum. String theory is believed to have a huge number of vacua – the so-called string theory landscape.


Outer space

Outer space has very low density and pressure, and is the closest physical approximation of a perfect vacuum. But no vacuum is truly perfect, not even in interstellar space, where there are still a few hydrogen atoms per cubic meter. Stars, planets, and moons keep their
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
s by gravitational attraction, and as such, atmospheres have no clearly delineated boundary: the density of atmospheric gas simply decreases with distance from the object. The Earth's atmospheric pressure drops to about at of altitude, the
Kármán line The Kármán line (or von Kármán line ) is a conventional definition of the Outer space#Boundary, edge of space; it is widely but not universally accepted. The international record-keeping body Fédération Aéronautique Internationale, FAI ( ...
, which is a common definition of the boundary with outer space. Beyond this line, isotropic gas pressure rapidly becomes insignificant when compared to radiation pressure from the Sun and the dynamic pressure of the
solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
s, so the definition of pressure becomes difficult to interpret. The thermosphere in this range has large gradients of pressure, temperature and composition, and varies greatly due to space weather. Astrophysicists prefer to use number density to describe these environments, in units of particles per cubic centimetre. But although it meets the definition of outer space, the atmospheric density within the first few hundred kilometers above the Kármán line is still sufficient to produce significant drag on
satellite A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scient ...
s. Most artificial satellites operate in this region called
low Earth orbit A low Earth orbit (LEO) is an geocentric orbit, orbit around Earth with a orbital period, period of 128 minutes or less (making at least 11.25 orbits per day) and an orbital eccentricity, eccentricity less than 0.25. Most of the artificial object ...
and must fire their engines every couple of weeks or a few times a year (depending on solar activity). The drag here is low enough that it could theoretically be overcome by radiation pressure on solar sails, a proposed propulsion system for interplanetary travel. All of the
observable universe The observable universe is a Ball (mathematics), spherical region of the universe consisting of all matter that can be observation, observed from Earth; the electromagnetic radiation from these astronomical object, objects has had time to reach t ...
is filled with large numbers of
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s, the so-called cosmic background radiation, and quite likely a correspondingly large number of
neutrino A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
s. The current
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
of this radiation is about .


Measurement

The quality of a vacuum is indicated by the amount of matter remaining in the system, so that a high quality vacuum is one with very little matter left in it. Vacuum is primarily measured by its
absolute pressure Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in unit of measurement, units of force per unit of surface area. Many techniques have been developed for the me ...
, but a complete characterization requires further parameters, such as
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
and chemical composition. One of the most important parameters is the
mean free path In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
(MFP) of residual gases, which indicates the average distance that molecules will travel between collisions with each other. As the gas density decreases, the MFP increases, and when the MFP is longer than the chamber, pump, spacecraft, or other objects present, the continuum assumptions of
fluid mechanics Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasma (physics), plasmas) and the forces on them. Originally applied to water (hydromechanics), it found applications in a wide range of discipl ...
do not apply. This vacuum state is called ''high vacuum'', and the study of fluid flows in this regime is called particle gas dynamics. The MFP of air at atmospheric pressure is very short, 70  nm, but at 100  mPa (≈) the MFP of room temperature air is roughly 100 mm, which is on the order of everyday objects such as
vacuum tube A vacuum tube, electron tube, thermionic valve (British usage), or tube (North America) is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. It ...
s. The Crookes radiometer turns when the MFP is larger than the size of the vanes. Vacuum quality is subdivided into ranges according to the technology required to achieve it or measure it. These ranges were defined in ISO 3529-1:2019 as shown in the following table (100 Pa corresponds to 0.75 Torr; Torr is a non-SI unit): * Atmospheric pressure is variable but are common standard or reference pressures. * Deep space is generally much more empty than any artificial vacuum. It may or may not meet the definition of high vacuum above, depending on what region of space and astronomical bodies are being considered. For example, the MFP of interplanetary space is smaller than the size of the Solar System, but larger than small planets and moons. As a result, solar winds exhibit continuum flow on the scale of the Solar System, but must be considered a bombardment of particles with respect to the Earth and Moon. * Perfect vacuum is an ideal state of no particles at all. It cannot be achieved in a
laboratory A laboratory (; ; colloquially lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurement may be performed. Laboratories are found in a variety of settings such as schools ...
, although there may be small volumes which, for a brief moment, happen to have no particles of matter in them. Even if all particles of matter were removed, there would still be
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s, as well as
dark energy In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure format ...
,
virtual particle A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emer ...
s, and other aspects of the quantum vacuum.


Relative versus absolute measurement

Vacuum is measured in units of
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
, typically as a subtraction relative to ambient atmospheric pressure on Earth. But the amount of relative measurable vacuum varies with local conditions. On the surface of
Venus Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
, where ground-level atmospheric pressure is much higher than on Earth, much higher relative vacuum readings would be possible. On the surface of the Moon with almost no atmosphere, it would be extremely difficult to create a measurable vacuum relative to the local environment. Similarly, much higher than normal relative vacuum readings are possible deep in the Earth's ocean. A
submarine A submarine (often shortened to sub) is a watercraft capable of independent operation underwater. (It differs from a submersible, which has more limited underwater capability.) The term "submarine" is also sometimes used historically or infor ...
maintaining an internal pressure of 1 atmosphere submerged to a depth of 10 atmospheres (98 metres; a 9.8-metre column of seawater has the equivalent weight of 1 atm) is effectively a vacuum chamber keeping out the crushing exterior water pressures, though the 1 atm inside the submarine would not normally be considered a vacuum. Therefore, to properly understand the following discussions of vacuum measurement, it is important that the reader assumes the relative measurements are being done on Earth at sea level, at exactly 1 atmosphere of ambient atmospheric pressure.


Measurements relative to 1 atm

The SI unit of pressure is the pascal (symbol Pa), but vacuum is often measured in
torr The torr (symbol: Torr) is a Pressure#Units, unit of pressure based on an absolute scale, defined as exactly of a standard atmosphere (unit), atmosphere (101325 Pa). Thus one torr is exactly (≈ ). Historically, one torr was intended to be ...
s, named for an Italian physicist Torricelli (1608–1647). A torr is equal to the displacement of a millimeter of mercury ( mmHg) in a
manometer Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressu ...
with 1 torr equaling 133.3223684 pascals above absolute zero pressure. Vacuum is often also measured on the barometric scale or as a percentage of
atmospheric pressure Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1,013. ...
in bars or atmospheres. Low vacuum is often measured in millimeters of mercury (mmHg) or pascals (Pa) below standard atmospheric pressure. "Below atmospheric" means that the absolute pressure is equal to the current atmospheric pressure. In other words, most low vacuum gauges that read, for example 50.79 Torr. Many inexpensive low vacuum gauges have a margin of error and may report a vacuum of 0 Torr but in practice this generally requires a two-stage rotary vane or other medium type of vacuum pump to go much beyond (lower than) 1 torr.


Measuring instruments

Many devices are used to measure the pressure in a vacuum, depending on what range of vacuum is needed. Hydrostatic gauges (such as the mercury column
manometer Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressu ...
) consist of a vertical column of liquid in a tube whose ends are exposed to different pressures. The column will rise or fall until its weight is in equilibrium with the pressure differential between the two ends of the tube. The simplest design is a closed-end U-shaped tube, one side of which is connected to the region of interest. Any fluid can be used, but mercury is preferred for its high density and low vapour pressure. Simple hydrostatic gauges can measure pressures ranging from 1 torr (100 Pa) to above atmospheric. An important variation is the
McLeod gauge A McLeod gauge is a scientific instrument used to measure very low pressures, down to 10−6 Torr (0.133 mPascal_(unit), Pa). It was invented in 1874 by Herbert McLeod (1841–1923). McLeod gauges were once commonly found attached to equipment tha ...
which isolates a known volume of vacuum and compresses it to multiply the height variation of the liquid column. The McLeod gauge can measure vacuums as high as 10−6 torr (0.1 mPa), which is the lowest direct measurement of pressure that is possible with current technology. Other vacuum gauges can measure lower pressures, but only indirectly by measurement of other pressure-controlled properties. These indirect measurements must be calibrated via a direct measurement, most commonly a McLeod gauge. The kenotometer is a particular type of hydrostatic gauge, typically used in power plants using steam turbines. The kenotometer measures the vacuum in the steam space of the condenser, that is, the exhaust of the last stage of the turbine. Mechanical or elastic gauges depend on a Bourdon tube, diaphragm, or capsule, usually made of metal, which will change shape in response to the pressure of the region in question. A variation on this idea is the capacitance manometer, in which the diaphragm makes up a part of a capacitor. A change in pressure leads to the flexure of the diaphragm, which results in a change in capacitance. These gauges are effective from 103 torr to 10−4 torr, and beyond. Thermal conductivity gauges rely on the fact that the ability of a gas to conduct heat decreases with pressure. In this type of gauge, a wire filament is heated by running current through it. A thermocouple or Resistance Temperature Detector (RTD) can then be used to measure the temperature of the filament. This temperature is dependent on the rate at which the filament loses heat to the surrounding gas, and therefore on the thermal conductivity. A common variant is the Pirani gauge which uses a single platinum filament as both the heated element and RTD. These gauges are accurate from 10 torr to 10−3 torr, but they are sensitive to the chemical composition of the gases being measured. Ionization gauges are used in ultrahigh vacuum. They come in two types: hot cathode and cold cathode. In the hot cathode version an electrically heated filament produces an electron beam. The electrons travel through the gauge and ionize gas molecules around them. The resulting ions are collected at a negative electrode. The current depends on the number of ions, which depends on the pressure in the gauge. Hot cathode gauges are accurate from 10−3 torr to 10−10 torr. The principle behind
cold cathode A cold cathode is a cathode that is not electrically heated by a Electrical filament, filament.A negatively charged electrode emits electrons or is the positively charged terminal. For more, see field emission. A cathode may be considered "cold" ...
version is the same, except that electrons are produced in a discharge created by a high voltage electrical discharge. Cold cathode gauges are accurate from 10−2 torr to 10−9 torr. Ionization gauge calibration is very sensitive to construction geometry, chemical composition of gases being measured, corrosion and surface deposits. Their calibration can be invalidated by activation at atmospheric pressure or low vacuum. The composition of gases at high vacuums will usually be unpredictable, so a mass spectrometer must be used in conjunction with the ionization gauge for accurate measurement.


Uses

Vacuum is useful in a variety of processes and devices. Its first widespread use was in the
incandescent light bulb An incandescent light bulb, also known as an incandescent lamp or incandescent light globe, is an electric light that produces illumination by Joule heating a #Filament, filament until it incandescence, glows. The filament is enclosed in a ...
to protect the filament from chemical degradation. The chemical inertness produced by a vacuum is also useful for
electron beam welding Electron-beam welding (EBW) is a fusion welding process in which a charged-particle beam, beam of high-velocity electrons is applied to two materials to be joined. The workpieces melt and flow together as the kinetic energy of the electrons is ...
,
cold welding Cold welding or contact welding is a solid-state welding process in which joining takes place without fusion or heating at the interface of the two parts to be welded. Unlike in fusion welding, no liquid or molten phase is present in the join ...
,
vacuum packing Vacuum packing is a method of packaging that removes air from the package prior to sealing. This method involves placing items in a plastic film package, removing air from inside and sealing the package. Shrink film is sometimes used to have a ti ...
and vacuum frying. Ultra-high vacuum is used in the study of atomically clean substrates, as only a very good vacuum preserves atomic-scale clean surfaces for a reasonably long time (on the order of minutes to days). High to ultra-high vacuum removes the obstruction of air, allowing particle beams to deposit or remove materials without contamination. This is the principle behind
chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (electro ...
,
physical vapor deposition Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polym ...
, and dry etching which are essential to the fabrication of semiconductors and
optical coating An optical coating is one or more thin-film optics, thin layers of material deposited on an optical component such as a lens (optics), lens, prism (optics), prism or mirror, which alters the way in which the optic reflection (physics), reflects a ...
s, and to
surface science Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid– gas interfaces, solid– vacuum interfaces, and liquid– gas interfaces. It includes the ...
. The reduction of convection provides the thermal insulation of thermos bottles. Deep vacuum lowers the
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
of liquids and promotes low temperature
outgassing Outgassing (sometimes called offgassing, particularly when in reference to indoor air quality) is the release of a gas that was dissolved, trapped, frozen, or absorbed in some material. Outgassing can include sublimation and evaporation (whic ...
which is used in freeze drying,
adhesive Adhesive, also known as glue, cement, mucilage, or paste, is any non-metallic substance applied to one or both surfaces of two separate items that binds them together and resists their separation. The use of adhesives offers certain advantage ...
preparation, distillation,
metallurgy Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the ...
, and process purging. The electrical properties of vacuum make
electron microscope An electron microscope is a microscope that uses a beam of electrons as a source of illumination. It uses electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing it ...
s and
vacuum tube A vacuum tube, electron tube, thermionic valve (British usage), or tube (North America) is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. It ...
s possible, including
cathode-ray tube A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a ...
s. Vacuum interrupters are used in electrical switchgear. Vacuum arc processes are industrially important for production of certain grades of steel or high purity materials. The elimination of air
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
is useful for flywheel energy storage and ultracentrifuges.


Vacuum-driven machines

Vacuums are commonly used to produce suction, which has an even wider variety of applications. The Newcomen steam engine used vacuum instead of pressure to drive a piston. In the 19th century, vacuum was used for traction on
Isambard Kingdom Brunel Isambard Kingdom Brunel ( ; 9 April 1806 – 15 September 1859) was an English civil engineer and mechanical engineer who is considered "one of the most ingenious and prolific figures in engineering history", "one of the 19th-century engi ...
's experimental atmospheric railway. Vacuum brakes were once widely used on
train A train (from Old French , from Latin">-4; we might wonder whether there's a point at which it's appropriate to talk of the beginnings of French, that is, when it wa ... , from Latin , "to pull, to draw") is a series of connected vehicles th ...
s in the UK but, except on
heritage railway A heritage railway or heritage railroad (U.S. usage) is a railway operated as living history to re-create or preserve railway scenes of the past. Heritage railways are often old railway lines preserved in a state depicting a period (or periods) ...
s, they have been replaced by air brakes. Manifold vacuum can be used to drive accessories on
automobile A car, or an automobile, is a motor vehicle with wheels. Most definitions of cars state that they run primarily on roads, Car seat, seat one to eight people, have four wheels, and mainly transport private transport#Personal transport, peopl ...
s. The best known application is the vacuum servo, used to provide power assistance for the
brake A brake is a machine, mechanical device that inhibits motion by absorbing energy from a moving system. It is used for Acceleration, slowing or stopping a moving vehicle, wheel, axle, or to prevent its motion, most often accomplished by means of ...
s. Obsolete applications include vacuum-driven windscreen wipers and Autovac fuel pumps. Some aircraft instruments ( Attitude Indicator (AI) and the Heading Indicator (HI)) are typically vacuum-powered, as protection against loss of all (electrically powered) instruments, since early aircraft often did not have electrical systems, and since there are two readily available sources of vacuum on a moving aircraft, the engine and an external venturi. Vacuum induction melting uses electromagnetic induction within a vacuum. Maintaining a vacuum in the condenser is an important aspect of the efficient operation of
steam turbine A steam turbine or steam turbine engine is a machine or heat engine that extracts thermal energy from pressurized steam and uses it to do mechanical work utilising a rotating output shaft. Its modern manifestation was invented by Sir Charles Par ...
s. A steam jet ejector or liquid ring vacuum pump is used for this purpose. The typical vacuum maintained in the condenser steam space at the exhaust of the turbine (also called condenser backpressure) is in the range 5 to 15 kPa (absolute), depending on the type of condenser and the ambient conditions.


Outgassing

Evaporation Evaporation is a type of vaporization that occurs on the Interface (chemistry), surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evapora ...
and sublimation into a vacuum is called
outgassing Outgassing (sometimes called offgassing, particularly when in reference to indoor air quality) is the release of a gas that was dissolved, trapped, frozen, or absorbed in some material. Outgassing can include sublimation and evaporation (whic ...
. All materials, solid or liquid, have a small
vapour pressure Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indicat ...
, and their outgassing becomes important when the vacuum pressure falls below this vapour pressure. Outgassing has the same effect as a leak and will limit the achievable vacuum. Outgassing products may condense on nearby colder surfaces, which can be troublesome if they obscure optical instruments or react with other materials. This is of great concern to space missions, where an obscured telescope or solar cell can ruin an expensive mission. The most prevalent outgassing product in vacuum systems is water absorbed by chamber materials. It can be reduced by desiccating or baking the chamber, and removing absorbent materials. Outgassed water can condense in the oil of rotary vane pumps and reduce their net speed drastically if gas ballasting is not used. High vacuum systems must be clean and free of organic matter to minimize outgassing. Ultra-high vacuum systems are usually baked, preferably under vacuum, to temporarily raise the vapour pressure of all outgassing materials and boil them off. Once the bulk of the outgassing materials are boiled off and evacuated, the system may be cooled to lower vapour pressures and minimize residual outgassing during actual operation. Some systems are cooled well below room temperature by
liquid nitrogen Liquid nitrogen (LN2) is nitrogen in a liquid state at cryogenics, low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, mobile liquid whose vis ...
to shut down residual outgassing and simultaneously cryopump the system.


Pumping and ambient air pressure

Fluids cannot generally be pulled, so a vacuum cannot be created by suction. Suction can spread and dilute a vacuum by letting a higher pressure push fluids into it, but the vacuum has to be created first before suction can occur. The easiest way to create an artificial vacuum is to expand the volume of a container. For example, the diaphragm muscle expands the chest cavity, which causes the volume of the lungs to increase. This expansion reduces the pressure and creates a partial vacuum, which is soon filled by air pushed in by atmospheric pressure. To continue evacuating a chamber indefinitely without requiring infinite growth, a compartment of the vacuum can be repeatedly closed off, exhausted, and expanded again. This is the principle behind positive displacement pumps, like the manual water pump for example. Inside the pump, a mechanism expands a small sealed cavity to create a vacuum. Because of the pressure differential, some fluid from the chamber (or the well, in our example) is pushed into the pump's small cavity. The pump's cavity is then sealed from the chamber, opened to the atmosphere, and squeezed back to a minute size. The above explanation is merely a simple introduction to vacuum pumping, and is not representative of the entire range of pumps in use. Many variations of the positive displacement pump have been developed, and many other pump designs rely on fundamentally different principles. Momentum transfer pumps, which bear some similarities to dynamic pumps used at higher pressures, can achieve much higher quality vacuums than positive displacement pumps. Entrapment pumps can capture gases in a solid or absorbed state, often with no moving parts, no seals and no vibration. None of these pumps are universal; each type has important performance limitations. They all share a difficulty in pumping low molecular weight gases, especially
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
,
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, and
neon Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
. The lowest pressure that can be attained in a system is also dependent on many things other than the nature of the pumps. Multiple pumps may be connected in series, called stages, to achieve higher vacuums. The choice of seals, chamber geometry, materials, and pump-down procedures will all have an impact. Collectively, these are called ''vacuum technique''. And sometimes, the final pressure is not the only relevant characteristic. Pumping systems differ in oil contamination, vibration, preferential pumping of certain gases, pump-down speeds, intermittent duty cycle, reliability, or tolerance to high leakage rates. In ultra high vacuum systems, some very "odd" leakage paths and outgassing sources must be considered. The water absorption of
aluminium Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
and
palladium Palladium is a chemical element; it has symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas (formally 2 Pallas), ...
becomes an unacceptable source of outgassing, and even the adsorptivity of hard metals such as stainless steel or
titanium Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
must be considered. Some oils and greases will boil off in extreme vacuums. The permeability of the metallic chamber walls may have to be considered, and the grain direction of the metallic flanges should be parallel to the flange face. The lowest pressures currently achievable in laboratory are about . However, pressures as low as have been indirectly measured in a cryogenic vacuum system. This corresponds to ≈100 particles/cm3.


Effects on humans and animals

Humans and animals exposed to vacuum will lose
consciousness Consciousness, at its simplest, is awareness of a state or object, either internal to oneself or in one's external environment. However, its nature has led to millennia of analyses, explanations, and debate among philosophers, scientists, an ...
after a few seconds and die of Hypoxia (medical), hypoxia within minutes, but the symptoms are not nearly as graphic as commonly depicted in media and popular culture. The reduction in pressure lowers the temperature at which blood and other body fluids boil, but the elastic pressure of blood vessels ensures that this boiling point remains above the internal body temperature of Although the blood will not boil, the formation of gas bubbles in bodily fluids at reduced pressures, known as ebullism, is still a concern. The gas may bloat the body to twice its normal size and slow circulation, but tissues are elastic and porous enough to prevent rupture. Swelling and ebullism can be restrained by containment in a flight suit. Space Shuttle program, Shuttle astronauts wore a fitted elastic garment called the Crew Altitude Protection Suit (CAPS) which prevents ebullism at pressures as low as 2 kPa (15 Torr). Rapid boiling will cool the skin and create frost, particularly in the mouth, but this is not a significant hazard. Animal experiments show that rapid and complete recovery is normal for exposures shorter than 90 seconds, while longer full-body exposures are fatal and resuscitation has never been successful. A study by NASA on eight chimpanzees found all of them survived two and a half minute exposures to vacuum. There is only a limited amount of data available from human accidents, but it is consistent with animal data. Limbs may be exposed for much longer if breathing is not impaired.. Robert Boyle was the first to show in 1660 that vacuum is lethal to small animals. An experiment indicates that plants are able to survive in a low pressure environment (1.5 kPa) for about 30 minutes. Cold or oxygen-rich atmospheres can sustain life at pressures much lower than atmospheric, as long as the density of oxygen is similar to that of standard sea-level atmosphere. The colder air temperatures found at altitudes of up to 3 km generally compensate for the lower pressures there. Above this altitude, oxygen enrichment is necessary to prevent altitude sickness in humans that did not undergo prior acclimatization, and spacesuits are necessary to prevent ebullism above 19 km. Most spacesuits use only 20 kPa (150 Torr) of pure oxygen. This pressure is high enough to prevent ebullism, but decompression sickness and air embolism, gas embolisms can still occur if decompression rates are not managed. Rapid decompression can be much more dangerous than vacuum exposure itself. Even if the victim does not hold his or her breath, venting through the windpipe may be too slow to prevent the fatal rupture of the delicate Pulmonary alveolus, alveoli of the lungs. Eardrums and sinuses may be ruptured by rapid decompression, soft tissues may bruise and seep blood, and the stress of shock will accelerate oxygen consumption leading to hypoxia. Injuries caused by rapid decompression are called barotrauma. A pressure drop of 13 kPa (100 Torr), which produces no symptoms if it is gradual, may be fatal if it occurs suddenly. Some extremophile microorganisms, such as tardigrades, can survive vacuum conditions for periods of days or weeks.


Examples


See also

* Decay of the vacuum (Pair production) * Manifold vacuum, Engine vacuum * False vacuum * Helium mass spectrometer – technical instrumentation to detect a vacuum leak * Brazing#Vacuum brazing, Vacuum brazing * Pneumatic tube – transport system using vacuum or pressure to move containers in tubes * Rarefaction – reduction of a medium's density * Suction – creation of a partial vacuum * Theta vacuum – vacuum state of semi-classical pure-Yang Mills theories * Vactrain * Vacuum cementing – natural process of solidifying homogeneous "dust" in vacuum * Vacuum column (tape drive), Vacuum column – controlling loose magnetic tape in early computer data recording tape drives * Vacuum deposition – process of depositing atoms and molecules in a sub-atmospheric pressure environment * Vacuum engineering * Vacuum flange – joining of vacuum systems


References

* *


External links


Leybold – Fundamentals of Vacuum Technology (PDF)

VIDEO on the nature of vacuum
by Canadian astrophysicist Doctor P


American Vacuum Society

Journal of Vacuum Science and Technology A

Journal of Vacuum Science and Technology B




*
Vacuum, Production of Space

"Much Ado About Nothing" by Professor John D. Barrow, Gresham College
* Free pdf copy o
The Structured Vacuum – thinking about nothing
by Johann Rafelski and Berndt Muller (1985) . {{Authority control Vacuum, Physical phenomena Industrial processes Gases Articles containing video clips Latin words and phrases