
A four-stroke (also four-cycle) engine is an
internal combustion (IC) engine in which the
piston
A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder (engine), cylinder a ...
completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:
#Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing a partial vacuum (negative pressure) in the cylinder through its downward motion.
#Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
#Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. (the end of the compression stroke) the compressed air-fuel mixture is ignited by a
spark plug (in a gasoline engine) or by heat generated by high compression (diesel engines), forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
#Exhaust: Also known as outlet. During the ''exhaust'' stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust port.
Four-stroke engines are the most common internal combustion engine design for motorized land transport,
being used in
automobile
A car, or an automobile, is a motor vehicle with wheels. Most definitions of cars state that they run primarily on roads, Car seat, seat one to eight people, have four wheels, and mainly transport private transport#Personal transport, peopl ...
s,
truck
A truck or lorry is a motor vehicle designed to transport freight, carry specialized payloads, or perform other utilitarian work. Trucks vary greatly in size, power, and configuration, but the vast majority feature body-on-frame construct ...
s, diesel
train
A train (from Old French , from Latin">-4; we might wonder whether there's a point at which it's appropriate to talk of the beginnings of French, that is, when it wa ... , from Latin , "to pull, to draw") is a series of connected vehicles th ...
s, light
aircraft
An aircraft ( aircraft) is a vehicle that is able to flight, fly by gaining support from the Atmosphere of Earth, air. It counters the force of gravity by using either Buoyancy, static lift or the Lift (force), dynamic lift of an airfoil, or, i ...
and
motorcycle
A motorcycle (motorbike, bike; uni (if one-wheeled); trike (if three-wheeled); quad (if four-wheeled)) is a lightweight private 1-to-2 passenger personal motor vehicle Steering, steered by a Motorcycle handlebar, handlebar from a saddle-style ...
s. The major alternative design is the
two-stroke cycle.
History
Otto cycle
Nikolaus August Otto was a traveling salesman for a grocery concern. In his travels, he encountered the internal combustion engine built in Paris by Belgian expatriate
Jean Joseph Etienne Lenoir. In 1860, Lenoir successfully created a double-acting engine that ran on illuminating gas at 4% efficiency. The 18 litre
Lenoir Engine produced only 2 horsepower. The Lenoir engine ran on illuminating gas made from coal, which had been developed in Paris by
Philip Lebon.
In testing a replica of the Lenoir engine in 1861, Otto became aware of the effects of compression on the fuel charge. In 1862, Otto attempted to produce an engine to improve on the poor efficiency and reliability of the Lenoir engine. He tried to create an engine that would compress the fuel mixture prior to ignition, but failed as that engine would run no more than a few minutes prior to its destruction. Many other engineers were trying to solve the problem, with no success.
In 1864, Otto and
Eugen Langen founded the first internal combustion engine production company, NA Otto and Cie (NA Otto and Company). Otto and Cie succeeded in creating a successful atmospheric engine that same year.
The factory ran out of space and was moved to the town of
Deutz, Germany in 1869, where the company was renamed to
Deutz Gasmotorenfabrik AG (The Deutz Gas Engine Manufacturing Company).
In 1872,
Gottlieb Daimler
Gottlieb Wilhelm Daimler (; 17 March 1834 – 6 March 1900) was a German engineer, industrial designer and industrialist. He was a pioneer of internal-combustion engines and automobile development. He invented the high-speed liquid petroleum-fue ...
was technical director and
Wilhelm Maybach
Wilhelm Maybach (; 9 February 1846 – 29 December 1929) was an early German engine designer and industrialist. During the 1890s he was hailed in France, then the world centre for car production, as the "King of Designers".
From the late 19th ce ...
was the head of engine design. Daimler was a gunsmith who had worked on the Lenoir engine.
By 1876, Otto and Langen succeeded in creating the first internal combustion engine that compressed the fuel mixture prior to combustion for far higher efficiency than any engine created to this time.
Daimler and Maybach left their employ at Otto and Cie and developed the first high-speed Otto engine in 1883. In 1885, they produced the first automobile to be equipped with an Otto engine. The
Daimler ''Reitwagen'' used a hot-tube ignition system and the fuel known as Ligroin to become the world's first vehicle powered by an internal combustion engine. It used a four-stroke engine based on Otto's design. The following year,
Karl Benz
Carl (or Karl) Friedrich Benz (; born Karl Friedrich Michael Vaillant; 25 November 1844 – 4 April 1929) was a German engine designer and automotive engineer. His Benz Patent-Motorwagen from 1885 is considered the first practical modern automo ...
produced a four-stroke engined automobile that is regarded as the first car.
In 1884, Otto's company, then known as Gasmotorenfabrik Deutz (GFD), developed electric ignition and the carburetor. In 1890, Daimler and Maybach formed a company known as
Daimler Motoren Gesellschaft. Today, that company is
Daimler-Benz
Mercedes-Benz Group AG (formerly Daimler-Benz, DaimlerChrysler, and Daimler) is a Germany, German Multinational corporation, multinational Automotive industry, automotive company headquartered in Stuttgart, Baden-Württemberg, Germany. It is o ...
.
Atkinson cycle
The Atkinson-cycle engine is a type of single stroke internal combustion engine invented by
James Atkinson in 1882. The Atkinson cycle is designed to provide efficiency at the expense of
power density, and is used in some modern hybrid electric applications.
The original Atkinson-cycle piston engine allowed the intake, compression, power, and exhaust strokes of the four-stroke cycle to occur in a single turn of the crankshaft and was designed to avoid infringing certain patents covering Otto-cycle engines.
Due to the unique
crankshaft
A crankshaft is a mechanical component used in a reciprocating engine, piston engine to convert the reciprocating motion into rotational motion. The crankshaft is a rotating Shaft (mechanical engineering), shaft containing one or more crankpins, ...
design of the Atkinson, its expansion ratio can differ from its compression ratio and, with a power stroke longer than its compression stroke, the engine can achieve greater
thermal efficiency
In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
For ...
than a traditional piston engine. While Atkinson's original design is no more than a historical curiosity, many modern engines use unconventional valve timing to produce the effect of a shorter compression stroke/longer power stroke, thus realizing the
fuel economy improvements the Atkinson cycle can provide.
Diesel cycle

The
diesel engine
The diesel engine, named after the German engineer Rudolf Diesel, is an internal combustion engine in which Combustion, ignition of diesel fuel is caused by the elevated temperature of the air in the cylinder due to Mechanics, mechanical Compr ...
is a technical refinement of the 1876 Otto-cycle engine. Where Otto had realized in 1861 that the efficiency of the engine could be increased by first compressing the fuel mixture prior to its ignition,
Rudolf Diesel
Rudolf Christian Karl Diesel (, ; 18 March 1858 – 29 September 1913) was a German inventor and mechanical engineer who invented the Diesel engine, which burns Diesel fuel; both are named after him.
Early life and education
Diesel was born on 1 ...
wanted to develop a more efficient type of engine that could run on much heavier fuel. The
Lenoir, Otto Atmospheric, and Otto Compression engines (both 1861 and 1876) were designed to run on
Illuminating Gas (coal gas). With the same motivation as Otto, Diesel wanted to create an engine that would give small industrial companies their own power source to enable them to compete against larger companies, and like Otto, to get away from the requirement to be tied to a municipal fuel supply. Like Otto, it took more than a decade to produce the high-compression engine that could self-ignite fuel sprayed into the cylinder. Diesel used an air spray combined with fuel in his first engine.
During initial development, one of the engines burst, nearly killing Diesel. He persisted, and finally created a successful engine in 1893. The high-compression engine, which ignites its fuel by the heat of compression, is now called the diesel engine, whether a four-stroke or two-stroke design.
The four-stroke diesel engine has been used in the majority of heavy-duty applications for many decades. It uses a heavy fuel containing more energy and requiring less refinement to produce. The most efficient Otto-cycle engines run near 30% thermal efficiency.
Thermodynamic analysis
The
thermodynamic analysis of the actual four-stroke and two-stroke cycles is not a simple task. However, the analysis can be simplified significantly if air standard assumptions
are utilized. The resulting cycle, which closely resembles the actual operating conditions, is the Otto cycle.
During normal operation of the engine, as the air/fuel mixture is being compressed, an electric spark is created to ignite the mixture. At low rpm this occurs close to TDC (Top Dead Centre). As engine rpm rises, the speed of the flame front does not change so the spark point is advanced earlier in the cycle to allow a greater proportion of the cycle for the charge to combust before the power stroke commences. This advantage is reflected in the various Otto engine designs; the atmospheric (non-compression) engine operates at 12% efficiency whereas the compressed-charge engine has an operating efficiency around 30%.
Fuel considerations
A problem with compressed charge engines is that the temperature rise of the compressed charge can cause pre-ignition. If this occurs at the wrong time and is too energetic, it can damage the engine. Different fractions of petroleum have widely varying flash points (the temperatures at which the fuel may self-ignite). This must be taken into account in engine and fuel design.
The tendency for the compressed fuel mixture to ignite early is limited by the chemical composition of the fuel. There are several grades of fuel to accommodate differing performance levels of engines. The fuel is altered to change its self-ignition temperature. There are several ways to do this. As engines are designed with higher
compression ratios the result is that pre-ignition is much more likely to occur since the fuel mixture is compressed to a higher temperature prior to deliberate ignition. The higher temperature more effectively evaporates fuels such as gasoline, which increases the efficiency of the compression engine. Higher compression ratios also mean that the distance that the piston can push to produce power is greater (which is called the
expansion ratio).
The octane rating of a given fuel is a measure of the fuel's resistance to self-ignition. A fuel with a higher numerical octane rating allows for a higher compression ratio, which extracts more energy from the fuel and more effectively converts that energy into useful work while at the same time preventing engine damage from pre-ignition. High octane fuel is also more expensive.
Many modern four-stroke engines employ
gasoline direct injection
Gasoline direct injection (GDI), also known as petrol direct injection (PDI), is a fuel injection system for internal combustion engines that run on gasoline (petrol) which injects fuel directly into the combustion chamber. This is distinct f ...
or GDI. In a gasoline direct-injected engine, the injector nozzle protrudes into the combustion chamber. The direct fuel injector injects gasoline under a very high pressure into the cylinder during the compression stroke, when the piston is closer to the top.
Diesel engines by their nature do not have concerns with pre-ignition. They have a concern with whether or not combustion can be started. The description of how likely diesel fuel is to ignite is called the Cetane rating. Because diesel fuels are of low volatility, they can be very hard to start when cold. Various techniques are used to start a cold diesel engine, the most common being the use of a
glow plug.
Design and engineering principles
Power output limitations
The maximum amount of power generated by an engine is determined by the maximum amount of air ingested. The amount of power generated by a piston engine is related to its size (cylinder volume), whether it is a
two-stroke engine
A two-stroke (or two-stroke cycle) engine is a type of internal combustion engine that completes a Thermodynamic power cycle, power cycle with two strokes of the piston, one up and one down, in one revolution of the crankshaft in contrast to a f ...
or four-stroke design,
volumetric efficiency, losses, air-to-fuel ratio, the
calorific value of the fuel, oxygen content of the air and speed (
RPM). The speed is ultimately limited by material strength and
lubrication. Valves, pistons and
connecting rods suffer severe acceleration forces. At high engine speed, physical breakage and
piston ring flutter can occur, resulting in power loss or even engine destruction.
Piston ring flutter occurs when the rings oscillate vertically within the piston grooves they reside in. Ring flutter compromises the seal between the ring and the cylinder wall, which causes a loss of cylinder pressure and power. If an engine spins too quickly, valve springs cannot act quickly enough to close the valves. This is commonly referred to as '
valve float', and it can result in piston to valve contact, severely damaging the engine. At high speeds the lubrication of piston cylinder wall interface tends to break down. This limits the piston speed for industrial engines to about 10 m/s.
Intake/exhaust port flow
The output power of an engine is dependent on the ability of intake (air–fuel mixture) and exhaust matter to move quickly through valve ports, typically located in the
cylinder head. To increase an engine's output power, irregularities in the intake and exhaust paths, such as casting flaws, can be removed, and, with the aid of an
air flow bench, the radii of valve port turns and
valve seat configuration can be modified to reduce resistance. This process is called
porting, and it can be done by hand or with a
CNC machine.
Waste heat recovery of an internal combustion engine
An internal combustion engine is on average capable of converting only 40-45% of supplied energy into mechanical work. A large part of the waste energy is in the form of heat that is released to the environment through coolant, fins etc. If somehow waste heat could be captured and turned to mechanical energy, the engine's performance and/or fuel efficiency could be improved by improving the overall efficiency of the cycle. It has been found that even if 6% of the entirely wasted heat is recovered it can increase the engine efficiency greatly.
Many methods have been devised in order to extract waste heat out of an engine exhaust and use it further to extract some useful work, decreasing the exhaust pollutants at the same time. Use of the
Rankine Cycle,
turbocharging and
thermoelectric generation can be very useful as a
waste heat recovery system.
Supercharging
One way to increase engine power is to force more air into the cylinder so that more power can be produced from each power stroke. This can be done using some type of air compression device known as a
supercharger
In an internal combustion engine, a supercharger compresses the intake gas, forcing more air into the engine in order to produce more power for a given displacement (engine), displacement. It is a form of forced induction that is mechanically ...
, which can be powered by the engine crankshaft.
Supercharging increases the power output limits of an internal combustion engine relative to its displacement. Most commonly, the supercharger is always running, but there have been designs that allow it to be cut out or run at varying speeds (relative to engine speed). Mechanically driven supercharging has the disadvantage that some of the output power is used to drive the supercharger, while power is wasted in the high pressure exhaust, as the air has been compressed twice and then gains more potential volume in the combustion but it is only expanded in one stage.
Turbocharging
A
turbocharger is a supercharger that is driven by the engine's exhaust gases, by means of a
turbine
A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical ...
. A turbocharger is incorporated into the exhaust system of a vehicle to make use of the expelled exhaust. It consists of a two piece, high-speed turbine assembly with one side that compresses the intake air, and the other side that is powered by the exhaust gas outflow.
When idling, and at low-to-moderate speeds, the turbine produces little power from the small exhaust volume, the turbocharger has little effect and the engine operates nearly in a naturally aspirated manner. When much more power output is required, the engine speed and throttle opening are increased until the exhaust gases are sufficient to 'spool up' the turbocharger's turbine to start compressing much more air than normal into the intake manifold. Thus, additional power (and speed) is expelled through the function of this turbine.
Turbocharging allows for more efficient engine operation because it is driven by exhaust pressure that would otherwise be (mostly) wasted, but there is a design limitation known as
turbo lag. The increased engine power is not immediately available due to the need to sharply increase engine RPM, to build up pressure and to spin up the turbo, before the turbo starts to do any useful air compression. The increased intake volume causes increased exhaust and spins the turbo faster, and so forth until steady high power operation is reached. Another difficulty is that the higher exhaust pressure causes the exhaust gas to transfer more of its heat to the mechanical parts of the engine.
Rod and piston-to-stroke ratio
The rod-to-stroke ratio is the ratio of the length of the
connecting rod to the length of the piston stroke. A longer rod reduces sidewise pressure of the piston on the cylinder wall and the stress forces, increasing engine life. It also increases the cost and engine height and weight.
A "square engine" is an engine with a bore diameter equal to its stroke length. An engine where the bore diameter is larger than its stroke length is an
oversquare engine, conversely, an engine with a bore diameter that is smaller than its stroke length is an undersquare engine.
Valve train
The valves are typically operated by a
camshaft rotating at half the speed of the
crankshaft
A crankshaft is a mechanical component used in a reciprocating engine, piston engine to convert the reciprocating motion into rotational motion. The crankshaft is a rotating Shaft (mechanical engineering), shaft containing one or more crankpins, ...
. It has a series of
cams along its length, each designed to open a valve during the appropriate part of an intake or exhaust stroke. A
tappet between valve and cam is a contact surface on which the cam slides to open the valve. Many engines use one or more camshafts "above" a row (or each row) of cylinders, as in the illustration, in which each cam directly actuates a valve through a flat tappet. In other engine designs the camshaft is in the
crankcase, in which case each cam usually contacts a
push rod, which contacts a
rocker arm that opens a valve, or in case of a
flathead engine a push rod is not necessary. The
overhead cam design typically allows higher engine speeds because it provides the most direct path between cam and valve.
Valve clearance
Valve clearance refers to the small gap between a valve lifter and a valve stem that ensures that the valve completely closes. On engines with mechanical valve adjustment, excessive clearance causes noise from the valve train. A too-small valve clearance can result in the valves not closing properly. This results in a loss of performance and possibly overheating of exhaust valves. Typically, the clearance must be readjusted each with a feeler gauge.
Most modern production engines use
hydraulic lifters to automatically compensate for valve train component wear. Dirty engine oil may cause lifter failure.
Energy balance
Otto engines are about 30% efficient; in other words, 30% of the energy generated by combustion is converted into useful rotational energy at the output shaft of the engine, while the remainder being lost due to waste heat, friction and engine accessories.
There are a number of ways to recover some of the energy lost to waste heat. The use of a turbocharger in diesel engines is very effective by boosting incoming air pressure and in effect, provides the same increase in performance as having more displacement. The Mack Truck company, decades ago, developed a turbine system that converted waste heat into kinetic energy that it fed back into the engine's transmission. In 2005, BMW announced the development of the
turbosteamer, a two-stage heat-recovery system similar to the Mack system that recovers 80% of the energy in the exhaust gas and raises the efficiency of an Otto engine by 15%.
By contrast, a
six-stroke engine may reduce fuel consumption by as much as 40%.
Modern engines are often intentionally built to be slightly less efficient than they could otherwise be. This is necessary for
emission controls such as
exhaust gas recirculation and
catalytic converters that reduce
smog
Smog, or smoke fog, is a type of intense air pollution. The word "smog" was coined in the early 20th century, and is a portmanteau of the words ''smoke'' and ''fog'' to refer to smoky fog due to its opacity, and odour. The word was then inte ...
and other atmospheric pollutants. Reductions in efficiency may be counteracted with an
engine control unit using
lean burn techniques.
In the United States, the
Corporate Average Fuel Economy mandates that vehicles must achieve an average of compared to the current standard of .
As automakers look to meet these standards by 2016, new ways of engineering the traditional
internal combustion engine
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
(ICE) have to be considered. Some potential solutions to increase
fuel efficiency
Fuel efficiency (or fuel economy) is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical energy, chemical potential energy contained in a carrier (fuel) into kinetic energy or Mechanical work, w ...
to meet new mandates include firing after the piston is farthest from the crankshaft, known as top
dead centre, and applying the
Miller cycle. Together, this redesign could significantly reduce fuel consumption and emissions.
Starting position, intake stroke, and compression stroke.
Ignition of fuel, power stroke, and exhaust stroke.
See also
*
Atkinson cycle
*
Miller cycle
*
Humphrey pump
*
Desmodromic valve
*
History of the internal combustion engine
*
Napier Deltic
*
Poppet valve
*
Radial engine
The radial engine is a reciprocating engine, reciprocating type internal combustion engine, internal combustion engine configuration in which the cylinder (engine), cylinders "radiate" outward from a central crankcase like the spokes of a wheel. ...
*
Rotary engine
*
Six-stroke engine
*
Stirling engine
A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical Work (ph ...
*
Stroke (engine)
**
Two- and four-stroke engines
**
Two-stroke engine
A two-stroke (or two-stroke cycle) engine is a type of internal combustion engine that completes a Thermodynamic power cycle, power cycle with two strokes of the piston, one up and one down, in one revolution of the crankshaft in contrast to a f ...
**
Five-stroke engine (uncommon)
**
Six-stroke engine
References
General sources
*
*scienceworld.wolfram.com/physics/OttoCycle.html
*
*
External links
*
Four stroke engine animation*
another explanation of the four-stroke engine.
some videos of car components in action.
New 4 stroke
{{Aircraft piston engine components
Internal combustion piston engines
1864 introductions