In
ring theory, a branch of
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the
quotient group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For ex ...
in
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
and to the
quotient space in
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
.
It is a specific example of a
quotient, as viewed from the general setting of
universal algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures in general, not specific types of algebraic structures.
For instance, rather than considering groups or rings as the object of stud ...
. Starting with a
ring and a
two-sided ideal in , a new ring, the quotient ring , is constructed, whose elements are the
cosets of
in
subject to special
and
operations. (Quotient ring notation almost always uses a
fraction slash ""; stacking the ring over the ideal using a horizontal line as a separator is uncommon and generally avoided.)
Quotient rings are distinct from the so-called "quotient field", or
field of fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
, of an
integral domain
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
as well as from the more general "rings of quotients" obtained by
localization.
Formal quotient ring construction
Given a ring
and a two-sided ideal
in , we may define an
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
on
as follows:
:
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
is in .
Using the ideal properties, it is not difficult to check that
is a
congruence relation
In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group (mathematics), group, ring (mathematics), ring, or vector space) that is compatible with the structure in the ...
.
In case , we say that
and
are ''congruent
modulo
In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation.
Given two positive numbers and , mo ...
''
(for example,
and
are congruent modulo
as their difference is an element of the ideal , the
even integers). The
equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
of the element
in
is given by:
This equivalence class is also sometimes written as
and called the "residue class of
modulo
".
The set of all such equivalence classes is denoted by ; it becomes a ring, the factor ring or quotient ring of
modulo , if one defines
* ;
* .
(Here one has to check that these definitions are
well-defined
In mathematics, a well-defined expression or unambiguous expression is an expression (mathematics), expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be ''not well defined'', ill defined ...
. Compare
coset
In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) ...
and
quotient group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For ex ...
.) The zero-element of
is , and the multiplicative identity is .
The map
from
to
defined by
is a
surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
ring homomorphism
In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
, sometimes called the ''natural quotient map'', ''natural projection map'', or the ''
canonical homomorphism''.
Examples
* The quotient ring
is
naturally isomorphic
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
to , and
is the
zero ring , since, by our definition, for any , we have that , which equals
itself. This fits with the rule of thumb that the larger the ideal , the smaller the quotient ring . If
is a proper ideal of , i.e., , then
is not the zero ring.
* Consider the ring of
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s
and the ideal of
even number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers.
The ...
s, denoted by . Then the quotient ring
has only two elements, the coset
consisting of the even numbers and the coset
consisting of the odd numbers; applying the definition, , where
is the ideal of even numbers. It is naturally isomorphic to the
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
with two elements, . Intuitively: if you think of all the even numbers as , then every integer is either
(if it is even) or
(if it is odd and therefore differs from an even number by ).
Modular arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to mo ...
is essentially arithmetic in the quotient ring
(which has
elements).
* Now consider the
ring of polynomials in the variable
with
real coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s, , and the ideal
consisting of all multiples of the
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
. The quotient ring
is naturally isomorphic to the field of
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s , with the class