Explicit Water Model
   HOME

TheInfoList



OR:

In computational chemistry, a water model is used to simulate and thermodynamically calculate water clusters, liquid
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
, and aqueous solutions with explicit solvent. The models are determined from
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
,
molecular mechanics Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using Force field (chemi ...
, experimental results, and these combinations. To imitate a specific nature of molecules, many types of models have been developed. In general, these can be classified by the following three points; (i) the number of interaction points called ''site'', (ii) whether the model is rigid or flexible, (iii) whether the model includes polarization effects. An alternative to the explicit water models is to use an
implicit solvation Implicit solvation (sometimes termed continuum solvation) is a method to represent solvent as a continuous medium instead of individual “explicit” solvent molecules, most often used in molecular dynamics simulations and in other applications of ...
model, also termed a continuum model, an example of which would be the COSMO solvation model or the polarizable continuum model (PCM) or a hybrid solvation model.


Simple water models

The rigid models are considered the simplest water models and rely on non-bonded interactions. In these models, bonding interactions are implicitly treated by
holonomic constraints In classical mechanics, holonomic constraints are relations between the position variables (and possibly time) that can be expressed in the following form: :f(u_1, u_2, u_3,\ldots, u_n, t) = 0 where \ are the ''n'' generalized coordinates that d ...
. The electrostatic interaction is modeled using
Coulomb's law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is convention ...
, and the dispersion and repulsion forces using the Lennard-Jones potential. The potential for models such as TIP3P (transferable intermolecular potential with 3 points) and TIP4P is represented by : E_ = \sum_i^ \sum_j^ \frac + \frac - \frac , where ''kC'', the electrostatic constant, has a value of 332.1 Å·kcal/(mol· e²) in the units commonly used in molecular modeling; ''qi'' and ''qj'' are the
partial charge A partial charge is a non-integer charge value when measured in elementary charge units. Partial charge is more commonly called net atomic charge. It is represented by the Greek lowercase letter 𝛿, namely 𝛿− or 𝛿+. Partial charges are c ...
s relative to the charge of the electron; ''rij'' is the distance between two atoms or charged sites; and ''A'' and ''B'' are the Lennard-Jones parameters. The charged sites may be on the atoms or on dummy sites (such as lone pairs). In most water models, the Lennard-Jones term applies only to the interaction between the oxygen atoms. The figure below shows the general shape of the 3- to 6-site water models. The exact geometric parameters (the OH distance and the HOH angle) vary depending on the model.


2-site

A 2-site model of water based on the familiar three-site SPC model (see below) has been shown to predict the dielectric properties of water using site-renormalized molecular fluid theory.


3-site

Three-site models have three interaction points corresponding to the three atoms of the water molecule. Each site has a point charge, and the site corresponding to the oxygen atom also has the Lennard-Jones parameters. Since 3-site models achieve a high computational efficiency, these are widely used for many applications of
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of t ...
simulations. Most of the models use a rigid geometry matching that of actual water molecules. An exception is the SPC model, which assumes an ideal tetrahedral shape (HOH angle of 109.47°) instead of the observed angle of 104.5°. The table below lists the parameters for some 3-site models. The SPC/E model adds an average polarization correction to the potential energy function: :E_\text = \frac 1 2 \sum_i \frac, where μ is the electric dipole moment of the effectively polarized water molecule (2.35 D for the SPC/E model), μ0 is the dipole moment of an isolated water molecule (1.85 D from experiment), and αi is an isotropic
polarizability Polarizability usually refers to the tendency of matter, when subjected to an electric field, to acquire an electric dipole moment in proportion to that applied field. It is a property of all matter, considering that matter is made up of elementar ...
constant, with a value of . Since the charges in the model are constant, this correction just results in adding 1.25 kcal/mol (5.22 kJ/mol) to the total energy. The SPC/E model results in a better density and diffusion constant than the SPC model. The TIP3P model implemented in the
CHARMM Chemistry at Harvard Macromolecular Mechanics (CHARMM) is the name of a widely used set of force fields for molecular dynamics, and the name for the molecular dynamics simulation and analysis computer software package associated with them. The CHA ...
force field is a slightly modified version of the original. The difference lies in the Lennard-Jones parameters: unlike TIP3P, the CHARMM version of the model places Lennard-Jones parameters on the hydrogen atoms too, in addition to the one on oxygen. The charges are not modified. Three-site model (TIP3P) has better performance in calculating specific heats.


Flexible SPC water model

The flexible simple point-charge water model (or flexible SPC water model) is a re-parametrization of the three-site SPC water model. The ''SPC'' model is rigid, whilst the ''flexible SPC'' model is flexible. In the model of Toukan and Rahman, the O–H stretching is made anharmonic, and thus the dynamical behavior is well described. This is one of the most accurate three-center water models without taking into account the polarization. In
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of t ...
simulations it gives the correct
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
and dielectric permittivity of water. Flexible SPC is implemented in the programs
MDynaMix Molecular Dynamics of Mixtures (MDynaMix) is a computer software package for general purpose molecular dynamics to simulate mixtures of molecules, interacting by AMBER- and CHARMM-like force fields in periodic boundary conditions. Algorithms are ...
and Abalone.


Other models

*Ferguson (flexible SPC) *CVFF (flexible) *MG (flexible and dissociative) *KKY potential (flexible model). *BLXL (smear charged potential).


4-site

The four-site models have four interaction points by adding one dummy atom near of the oxygen along the bisector of the HOH angle of the three-site models (labeled M in the figure). The dummy atom only has a negative charge. This model improves the electrostatic distribution around the water molecule. The first model to use this approach was the Bernal–Fowler model published in 1933, which may also be the earliest water model. However, the BF model doesn't reproduce well the bulk properties of water, such as
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
and heat of vaporization, and is thus of historical interest only. This is a consequence of the parameterization method; newer models, developed after modern computers became available, were parameterized by running
Metropolis Monte Carlo A metropolis () is a large city or conurbation which is a significant economic, political, and cultural center for a country or region, and an important hub for regional or international connections, commerce, and communications. A big c ...
or molecular dynamics simulations and adjusting the parameters until the bulk properties are reproduced well enough. The TIP4P model, first published in 1983, is widely implemented in computational chemistry software packages and often used for the simulation of biomolecular systems. There have been subsequent reparameterizations of the TIP4P model for specific uses: the TIP4P-Ew model, for use with Ewald summation methods; the TIP4P/Ice, for simulation of solid water ice; TIP4P/2005, a general parameterization for simulating the entire phase diagram of condensed water; and TIP4PQ/2005, a similar model but designed to accurately describe the properties of solid and liquid water when quantum effects are included in the simulation. Most of the four-site water models use an OH distance and HOH angle which match those of the free water molecule. One exception is the OPC model, in which no geometry constraints are imposed other than the fundamental C2v molecular symmetry of the water molecule. Instead, the point charges and their positions are optimized to best describe the electrostatics of the water molecule. OPC reproduces a comprehensive set of bulk properties more accurately than several of the commonly used rigid ''n''-site water models. The OPC model is implemented within the
AMBER Amber is fossilized tree resin that has been appreciated for its color and natural beauty since Neolithic times. Much valued from antiquity to the present as a gemstone, amber is made into a variety of decorative objects."Amber" (2004). In ...
force field. Others: *q-TIP4P/F (flexible) *TIP4P/2005f (flexible)


5-site

The 5-site models place the negative charge on dummy atoms (labeled L) representing the lone pairs of the oxygen atom, with a tetrahedral-like geometry. An early model of these types was the BNS model of Ben-Naim and Stillinger, proposed in 1971, soon succeeded by the ST2 model of Stillinger and Rahman in 1974. Mainly due to their higher computational cost, five-site models were not developed much until 2000, when the TIP5P model of Mahoney and Jorgensen was published. When compared with earlier models, the TIP5P model results in improvements in the geometry for the
water dimer The water dimer consists of two water (molecule), water molecules loosely bound by a hydrogen bond. It is the smallest water cluster. Because it is the simplest model system for studying hydrogen bonding in water, it has been the target of many ...
, a more "tetrahedral" water structure that better reproduces the experimental
radial distribution function In statistical mechanics, the radial distribution function, (or pair correlation function) g(r) in a system of particles (atoms, molecules, colloids, etc.), describes how density varies as a function of distance from a reference particle. If ...
s from
neutron diffraction Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to o ...
, and the temperature of maximal density of water. The TIP5P-E model is a reparameterization of TIP5P for use with Ewald sums. Note, however, that the BNS and ST2 models do not use Coulomb's law directly for the electrostatic terms, but a modified version that is scaled down at short distances by multiplying it by the switching function ''S''(''r''): : S(r_) = \begin 0 & \textr_ \le R_\text, \\ \frac & \textR_\text \le r_ \le R_\text, \\ 1 & \textR_\text \le r_. \end Thus, the ''R''L and ''R''U parameters only apply to BNS and ST2.


6-site

Originally designed to study water/ice systems, a 6-site model that combines all the sites of the 4- and 5-site models was developed by Nada and van der Eerden. Since it had a very high melting temperature when employed under periodic electrostatic conditions (Ewald summation), a modified version was published later optimized by using the Ewald method for estimating the Coulomb interaction.


Other

*The effect of explicit solute model on solute behavior in biomolecular simulations has been also extensively studied. It was shown that explicit water models affected the specific solvation and dynamics of unfolded peptides, while the conformational behavior and flexibility of folded peptides remained intact. *MB model. A more abstract model resembling the
Mercedes-Benz Mercedes-Benz (), commonly referred to as Mercedes and sometimes as Benz, is a German luxury and commercial vehicle automotive brand established in 1926. Mercedes-Benz AG (a Mercedes-Benz Group subsidiary established in 2019) is headquartere ...
logo that reproduces some features of water in two-dimensional systems. It is not used as such for simulations of "real" (i.e., three-dimensional) systems, but it is useful for qualitative studies and for educational purposes. *Coarse-grained models. One- and two-site models of water have also been developed. In coarse-grain models, each site can represent several water molecules. *Many-body models. Water models built using training-set configurations solved quantum mechanically, which then use machine learning protocols to extract potential-energy surfaces. These potential-energy surfaces are fed into MD simulations for an unprecedented degree of accuracy in computing physical properties of condensed phase systems. **Another classification of many body models is on the basis of the expansion of the underlying electrostatics, e.g., the SCME (Single Center Multipole Expansion) model


Computational cost

The computational cost of a water simulation increases with the number of interaction sites in the water model. The CPU time is approximately proportional to the number of interatomic distances that need to be computed. For the 3-site model, 9 distances are required for each pair of water molecules (every atom of one molecule against every atom of the other molecule, or 3 × 3). For the 4-site model, 10 distances are required (every charged site with every charged site, plus the O–O interaction, or 3 × 3 + 1). For the 5-site model, 17 distances are required (4 × 4 + 1). Finally, for the 6-site model, 26 distances are required (5 × 5 + 1). When using rigid water models in molecular dynamics, there is an additional cost associated with keeping the structure constrained, using
constraint algorithm In computational chemistry, a constraint algorithm is a method for satisfying the Newtonian motion of a rigid body which consists of mass points. A restraint algorithm is used to ensure that the distance between mass points is maintained. The gen ...
s (although with bond lengths constrained it is often possible to increase the time step).


See also

*
Water (properties) Water () is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "univer ...
*
Water (data page) This page provides supplementary data to the article properties of water. Further comprehensive authoritative data can be found at thNIST Webbookpage on thermophysical properties of fluids. Structure and properties Thermodynamic properties ...
*
Water dimer The water dimer consists of two water (molecule), water molecules loosely bound by a hydrogen bond. It is the smallest water cluster. Because it is the simplest model system for studying hydrogen bonding in water, it has been the target of many ...
*
Force field (chemistry) In the context of chemistry and molecular modelling, a force field is a computational method that is used to estimate the forces between atoms within molecules and also between molecules. More precisely, the force field refers to the function ...
*
Comparison of force field implementations This is a table of notable computer programs implementing molecular mechanics force fields. See also *Force field (chemistry) * List of software for Monte Carlo molecular modeling *Molecular mechanics * Molecular design software *Molecule edi ...
*
Molecular mechanics Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using Force field (chemi ...
*
Molecular modelling Molecular modelling encompasses all methods, theoretical and computational, used to model or mimic the behaviour of molecules. The methods are used in the fields of computational chemistry, drug design, computational biology and materials sci ...
*
Comparison of software for molecular mechanics modeling This is a list of computer programs that are predominantly used for molecular mechanics calculations. See also * Car–Parrinello molecular dynamics * Comparison of force-field implementations *Comparison of nucleic acid simulation software ...
* Solvent models


References

{{DEFAULTSORT:Water Model Water Computational chemistry