
In
astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
, extinction is the
absorption and
scattering
In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiat ...
of
electromagnetic radiation
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
by dust and gas between an emitting
astronomical object
An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
and the
observer. Interstellar extinction was first documented as such in 1930 by
Robert Julius Trumpler.
[
] However, its effects had been noted in 1847 by
Friedrich Georg Wilhelm von Struve, and its effect on the colors of
star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s had been observed by a number of individuals who did not connect it with the general presence of
galactic dust. For stars lying near the plane of the
Milky Way
The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
which are within a few thousand
parsec
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (AU), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, and ...
s of the Earth, extinction in the
visual band of frequencies (
photometric system
In astronomy, a photometric system is a set of well-defined passbands (or optical filters), with a known sensitivity to incident radiation. The sensitivity usually depends on the optical system, detectors and filters used. For each photometric s ...
) is roughly 1.8
magnitudes per kiloparsec.
For
Earth-bound observers, extinction arises both from the
interstellar medium
The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
and the
Earth's atmosphere; it may also arise from
circumstellar dust around an observed object. Strong extinction in Earth's atmosphere of some
wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
regions (such as
X-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
,
ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
, and
infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
) is overcome by the use of
space-based observatories. Since
blue light is much more strongly
attenuated than
red light, extinction causes objects to appear redder than expected; this phenomenon is called interstellar reddening.
[See Binney and Merrifeld, Section 3.7 (1998, ), Carroll and Ostlie, Section 12.1 (2007, ), and Kutner (2003, ) for applications in astronomy.]
Interstellar reddening
Interstellar reddening is a phenomenon associated with interstellar extinction where the
spectrum
A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of electromagnetic radiation from a
radiation source changes characteristics from that which the object originally
emitted. Reddening occurs due to the light scattering off
dust
Dust is made of particle size, fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian processes, aeolian process), Types of volcan ...
and other
matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
in the
interstellar medium
The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
. Interstellar reddening is a different phenomenon from
redshift
In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and e ...
, which is the proportional
frequency shifts of spectra without distortion. Reddening preferentially removes shorter wavelength
photons
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
from a radiated spectrum while leaving behind the longer wavelength photons, leaving the
spectroscopic lines unchanged.
In most
photometric system
In astronomy, a photometric system is a set of well-defined passbands (or optical filters), with a known sensitivity to incident radiation. The sensitivity usually depends on the optical system, detectors and filters used. For each photometric s ...
s, filters (passbands) are used from which readings of magnitude of light may take account of latitude and humidity among terrestrial factors. Interstellar reddening equates to the "color excess", defined as the difference between an object's observed color index and its intrinsic color index (sometimes referred to as its normal color index). The latter is the theoretical value which it would have if unaffected by extinction. In the first system, the
UBV photometric system devised in the 1950s and its most closely related successors, the object's color excess
is related to the object's
B−V color (calibrated blue minus calibrated visible) by:
For an A0-type main sequence star (these have median wavelength and heat among the main sequence) the color indices are calibrated at 0 based on an intrinsic reading of such a star (± exactly 0.02 depending on which spectral point, i.e. precise passband within the abbreviated color name is in question, see
color index). At least two and up to five measured passbands in magnitude are then compared by subtraction: U, B, V, I, or R during which the color excess from extinction is calculated and deducted. The name of the four sub-indices (R minus I etc.) and order of the subtraction of recalibrated magnitudes is from right to immediate left within this sequence.
General characteristics
Interstellar reddening occurs because
interstellar dust absorbs and scatters blue light waves more than red light waves, making stars appear redder than they are. This is similar to the effect seen when dust particles in the atmosphere of Earth
contribute to red sunsets.
Broadly speaking, interstellar extinction is strongest at short wavelengths, generally observed by using techniques from spectroscopy. Extinction results in a change in the shape of an observed spectrum. Superimposed on this general shape are absorption features (wavelength bands where the intensity is lowered) that have a variety of origins and can give clues as to the chemical composition of the interstellar material, e.g. dust grains. Known absorption features include the 2175
Å bump, the
diffuse interstellar bands, the 3.1
μm water ice feature, and the 10 and 18 μm
silicate
A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is also used ...
features.
In the
solar neighborhood, the rate of interstellar extinction in the
Johnson–Cousins V-band (visual filter) averaged at a wavelength of 540 nm is usually taken to be 0.7–1.0 mag/kpc−simply an average due to the ''clumpiness'' of interstellar dust. In general, however, this means that a star will have its brightness reduced by about a factor of 2 in the V-band viewed from a good night sky vantage point on earth for every
kiloparsec
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (AU), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, a ...
(3,260 light years) it is farther away from us.
The amount of extinction can be significantly higher than this in specific directions. For example, some regions of the
Galactic Center
The Galactic Center is the barycenter of the Milky Way and a corresponding point on the rotational axis of the galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a ...
are awash with obvious intervening dark dust from our spiral arm (and perhaps others) and themselves in a bulge of dense matter, causing as much as more than 30 magnitudes of extinction in the optical, meaning that less than 1 optical photon in 10
12 passes through. This results in the
zone of avoidance, where our view of the extra-galactic sky is severely hampered, and background galaxies, such as
Dwingeloo 1, were only discovered recently through observations in
radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
and
infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
.
The general shape of the ultraviolet through near-infrared (0.125 to 3.5 μm) extinction curve (plotting extinction in magnitude against wavelength, often inverted) looking from our vantage point at other objects in the
Milky Way
The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
, is fairly well characterized by the stand-alone parameter of relative visibility (of such visible light) R(V) (which is different along different lines of sight),
but there are known deviations from this characterization. Extending the extinction law into the mid-infrared wavelength range is difficult due to the lack of suitable targets and various contributions by absorption features.
R(V) compares aggregate and particular extinctions. It is
Restated, it is the total extinction, A(V) divided by the selective total extinction (A(B)−A(V)) of those two wavelengths (bands). A(B) and A(V) are the ''total extinction'' at the
B and V filter bands. Another measure used in the literature is the ''absolute extinction'' A(λ)/A(V) at wavelength λ, comparing the total extinction at that wavelength to that at the V band.
R(V) is known to be correlated with the average size of the dust grains causing the extinction. For the Milky Way Galaxy, the typical value for R(V) is 3.1, but is found to vary considerably across different lines of sight.
As a result, when computing cosmic distances it can be advantageous to move to star data from the near-infrared (of which the filter or passband Ks is quite standard) where the variations and amount of extinction are significantly less, and similar ratios as to R(Ks): 0.49±0.02 and 0.528±0.015 were found respectively by independent groups.
Those two more modern findings differ substantially relative to the commonly referenced historical value ≈0.7.
The relationship between the total extinction, A(V) (measured in
magnitudes), and the
column density of neutral
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
atoms column, N
H (usually measured in cm
−2), shows how the gas and dust in the interstellar medium are related. From studies using ultraviolet spectroscopy of reddened stars and X-ray scattering halos in the Milky Way, Predehl and Schmitt found the relationship between N
H and A(V) to be approximately:
:
(see also:).
Astronomers have determined the three-dimensional distribution of extinction in the "solar circle" (our region of our galaxy), using visible and near-infrared stellar observations and a model of distribution of stars. The dust causing extinction mainly lies along the
spiral arms, as observed in other spiral galaxies.
Measuring extinction towards an object
To measure the extinction curve for a
star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
, the star's spectrum is compared to the observed spectrum of a similar star known not to be affected by extinction (unreddened). It is also possible to use a theoretical spectrum instead of the observed spectrum for the comparison, but this is less common. In the case of
emission nebula
An emission nebula is a nebula formed of ionized gases that emit light of various wavelengths. The most common source of ionization is high-energy ultraviolet photons emitted from a nearby hot star. Among the several different types of emission n ...
e, it is common to look at the ratio of two
emission lines which should not be affected by the
temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
and
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
in the nebula. For example, the ratio of
hydrogen-alpha to
hydrogen-beta emission is always around 2.85 under a wide range of conditions prevailing in nebulae. A ratio other than 2.85 must therefore be due to extinction, and the amount of extinction can thus be calculated.
The 2175-angstrom feature
One prominent feature in measured extinction curves of many objects within the Milky Way is a broad 'bump' at about 2175
Å, well into the
ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
region of the electromagnetic spectrum. This feature was first observed in the 1960s, but its origin is still not well understood. Several models have been presented to account for this bump which include
graphitic grains with a mixture of
PAH molecules. Investigations of interstellar grains embedded in interplanetary dust particles (IDP) observed this feature and identified the carrier with organic carbon and amorphous silicates present in the grains.
Extinction curves of other galaxies

The form of the standard extinction curve depends on the composition of the ISM, which varies from galaxy to galaxy. In the
Local Group, the best-determined extinction curves are those of the Milky Way, the
Small Magellanic Cloud
The Small Magellanic Cloud (SMC) is a dwarf galaxy near the Milky Way. Classified as a dwarf irregular galaxy, the SMC has a D25 isophotal diameter of about , and contains several hundred million stars. It has a total mass of approximately 7 bill ...
(SMC) and the
Large Magellanic Cloud (LMC).
In the LMC, there is significant variation in the characteristics of the ultraviolet extinction with a weaker 2175 Å bump and stronger far-UV extinction in the region associated with the LMC2 supershell (near the 30 Doradus starbursting region) than seen elsewhere in the LMC and in the Milky Way. In the SMC, more extreme variation is seen with no 2175 Å bump and very strong far-UV extinction in the star forming Bar and fairly normal ultraviolet extinction seen in the more quiescent Wing.
This gives clues as to the composition of the ISM in the various galaxies. Previously, the different average extinction curves in the Milky Way, LMC, and SMC were thought to be the result of the different
metallicities of the three galaxies: the LMC's metallicity is about 40% of that of the
Milky Way
The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
, while the SMC's is about 10%. Finding extinction curves in both the LMC and SMC which are similar to those found in the Milky Way
and finding extinction curves in the Milky Way that look more like those found in the LMC2 supershell of the LMC and in the SMC Bar has given rise to a new interpretation. The variations in the curves seen in the Magellanic Clouds and Milky Way may instead be caused by processing of the dust grains by nearby star formation. This interpretation is supported by work in starburst galaxies (which are undergoing intense star formation episodes) which shows that their dust lacks the 2175 Å bump.
Atmospheric extinction
Atmospheric extinction gives the
rising or
setting Sun an orange hue and varies with location and
altitude
Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum (geodesy), datum and a point or object. The exact definition and reference datum varies according to the context (e.g., aviation, geometr ...
. Astronomical
observatories
An observatory is a location used for observing terrestrial, marine, or celestial events. Astronomy, climatology/meteorology, geophysics, oceanography and volcanology are examples of disciplines for which observatories have been constructed.
Th ...
generally are able to characterise the local extinction curve very accurately, to allow observations to be corrected for the effect. Nevertheless, the atmosphere is completely opaque to many wavelengths requiring the use of
satellite
A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scient ...
s to make observations.
This extinction has three main components:
Rayleigh scattering
Rayleigh scattering ( ) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation. For light frequencies well below the resonance frequency of the scat ...
by air molecules,
scattering by particulates, and molecular
absorption. Molecular absorption is often referred to as
telluric absorption, as it is caused by the
Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
(''telluric'' is a synonym for ''terrestrial''). The most important sources of telluric absorption are
molecular oxygen and
ozone
Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
, which strongly absorb radiation near
ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
, and
water
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
, which strongly absorbs
infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
.
The amount of such extinction is lowest at the observer's
zenith
The zenith (, ) is the imaginary point on the celestial sphere directly "above" a particular location. "Above" means in the vertical direction (Vertical and horizontal, plumb line) opposite to the gravity direction at that location (nadir). The z ...
and highest near the
horizon
The horizon is the apparent curve that separates the surface of a celestial body from its sky when viewed from the perspective of an observer on or near the surface of the relevant body. This curve divides all viewing directions based on whethe ...
. A given star, preferably at solar opposition, reaches its greatest
celestial altitude and optimal time for observation when the star is near the local
meridian around solar
midnight
Midnight is the transition time from one day to the next – the moment when the date changes, on the local official clock time for any particular jurisdiction. By clock time, midnight is the opposite of noon, differing from it by 12 hours.
...
and if the star has a favorable
declination
In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. The declination angle is measured north (positive) or ...
(''i.e.'', similar to the observer's
latitude
In geography, latitude is a geographic coordinate system, geographic coordinate that specifies the north-south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at t ...
); thus, the seasonal time due to
axial tilt
In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orbita ...
is key. Extinction is approximated by multiplying the standard atmospheric extinction curve (plotted against each wavelength) by the mean
air mass
In meteorology, an air mass is a volume of air defined by its temperature and humidity. Air masses cover many hundreds or thousands of square miles, and adapt to the characteristics of the surface below them. They are classified according to ...
calculated over the duration of the observation. A dry atmosphere reduces infrared extinction significantly.
References
Further reading
*
*
*
*McCall, M. L. (2004). "On Determining Extinction from Reddening". ''The Astronomical Journal''. 128: 2144–2169. http://adsabs.harvard.edu/abs/2004AJ....128.2144M
*{{Cite journal, last1=Rouleau , first1=F. , last2=Henning , first2=T. , last3=Stognienko , first3=R. , date=1997 , title=Constraints on the properties of the 2175Å interstellar feature carrier , journal=Astronomy and Astrophysics , volume=322 , pages=633–645 , arxiv=astro-ph/9611203 , bibcode=1997A&A...322..633R
Observational astronomy
Galactic astronomy
Extragalactic astronomy
Concepts in astronomy