HOME

TheInfoList



OR:

Entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
is one of the few quantities in the
physical sciences Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together is called the "physical sciences". Definition ...
that require a particular direction for
time Time is the continuous progression of existence that occurs in an apparently irreversible process, irreversible succession from the past, through the present, and into the future. It is a component quantity of various measurements used to sequ ...
, sometimes called an
arrow of time An arrow is a fin-stabilized projectile launched by a bow. A typical arrow usually consists of a long, stiff, straight shaft with a weighty (and usually sharp and pointed) arrowhead attached to the front end, multiple fin-like stabilizers ca ...
. As one goes "forward" in time, the
second law of thermodynamics The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
says, the entropy of an
isolated system In physical science, an isolated system is either of the following: # a physical system so far removed from other systems that it does not interact with them. # a thermodynamic system enclosed by rigid immovable walls through which neither ...
can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the
past The past is the set of all Spacetime#Definitions, events that occurred before a given point in time. The past is contrasted with and defined by the present and the future. The concept of the past is derived from the linear fashion in which human ...
from the
future The future is the time after the past and present. Its arrival is considered inevitable due to the existence of time and the laws of physics. Due to the apparent nature of reality and the unavoidability of the future, everything that currently ex ...
. In
thermodynamic system A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
s that are not isolated, local entropy can decrease over time, accompanied by a compensating entropy increase in the
surroundings Surroundings, or environs is an area around a given physical or geographical point or place. The exact definition depends on the field. Surroundings can also be used in geography (when it is more precisely known as vicinity, or vicinage) and ...
; examples include objects undergoing
cooling Cooling is removal of heat, usually resulting in a lower temperature and/or Phase transition, phase change. Temperature lowering achieved by any other means may also be called cooling. The Heat transfer, transfer of Internal energy, thermal energ ...
,
living systems Living systems are life forms (or, more colloquially known as living things) treated as a system. They are said to be open self-organizing and said to interact with their environment. These systems are maintained by flows of information, energy an ...
, and the formation of typical
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
s. Much like
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, despite being an abstract concept, everyone has an intuitive sense of the effects of entropy. For example, it is often very easy to tell the difference between a video being played forwards or backwards. A video may depict a wood fire that melts a nearby ice block; played in reverse, it would show a puddle of water turning a cloud of smoke into unburnt wood and freezing itself in the process. Surprisingly, in either case, the vast majority of the
laws of physics Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) ...
are not broken by these processes, with the second law of thermodynamics being one of the only exceptions. When a law of physics applies equally when time is reversed, it is said to show
T-symmetry T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal, : T: t \mapsto -t. Since the second law of thermodynamics states that entropy increases as time flows toward the futur ...
; in this case, entropy is what allows one to decide if the video described above is playing forwards or in reverse as intuitively we identify that only when played forwards the entropy of the scene is increasing. Because of the second law of thermodynamics, entropy prevents macroscopic processes showing T-symmetry. When studying at a microscopic scale, the above judgements cannot be made. Watching a single smoke particle buffeted by air, it would not be clear if a video was playing forwards or in reverse, and, in fact, it would not be possible as the laws which apply show T-symmetry. As it drifts left or right, ''qualitatively'' it looks no different; it is only when the gas is studied at a
macroscopic scale The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenom ...
that the effects of entropy become noticeable (see
Loschmidt's paradox In physics, Loschmidt's paradox (named for Josef Loschmidt), also known as the reversibility paradox, irreversibility paradox, or ' (), is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics ...
). On average it would be expected that the smoke particles around a struck match would drift away from each other, diffusing throughout the available space. It would be an astronomically improbable event for all the particles to cluster together, yet the movement of any one smoke particle cannot be predicted. By contrast, certain subatomic interactions involving the
weak nuclear force In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
violate the conservation of parity, but only very rarely. According to the CPT theorem, this means they should also be time irreversible, and so establish an arrow of time. This, however, is neither linked to the thermodynamic arrow of time, nor has anything to do with the daily experience of time irreversibility.


Overview

The
second law of thermodynamics The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
allows for the entropy to ''remain the same'' regardless of the direction of time. If the entropy is constant in either direction of time, there would be no preferred direction. However, the entropy can only be a constant if the system is in the highest possible state of disorder, such as a gas that always was, and always will be, uniformly spread out in its container. The existence of a thermodynamic arrow of time implies that the system is highly ordered in one time direction only, which would by definition be the "past". Thus this law is about the
boundary conditions In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satis ...
rather than the
equations of motion In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathem ...
. The second law of thermodynamics is
statistical Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
in nature, and therefore its reliability arises from the huge number of particles present in macroscopic systems. It is not impossible, in principle, for all 6 × 1023 atoms in a mole of a gas to spontaneously migrate to one half of a container; it is only ''fantastically'' unlikely—so unlikely that no macroscopic violation of the Second Law has ever been observed. The thermodynamic arrow is often linked to the cosmological arrow of time, because it is ultimately about the
boundary conditions In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satis ...
of the early universe. According to the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
theory, the
Universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
was initially very hot with energy distributed uniformly. For a system in which
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
is important, such as the universe, this is a low-entropy state (compared to a high-entropy state of having all matter collapsed into
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s, a state to which the system may eventually evolve). As the Universe grows, its temperature drops, which leaves less energy er unit volume of spaceavailable to perform work in the future than was available in the past. Additionally, perturbations in the energy density grow (eventually forming
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar Sys ...
and
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s). Thus the Universe itself has a well-defined thermodynamic arrow of time. But this does not address the question of why the initial state of the universe was that of low entropy. If cosmic expansion were to halt and reverse due to gravity, the temperature of the Universe would once again grow hotter, but its entropy would also continue to increase due to the continued growth of perturbations and the eventual black hole formation, until the latter stages of the
Big Crunch The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach absolute zero, an eve ...
when entropy would be lower than now.


An example of apparent irreversibility

Consider the situation in which a large container is filled with two separated liquids, for example a dye on one side and water on the other. With no barrier between the two liquids, the random jostling of their
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s will result in them becoming more mixed as time passes. However, if the dye and water are mixed then one does not expect them to separate out again when left to themselves. A movie of the mixing would seem realistic when played forwards, but unrealistic when played backwards. If the large container is observed early on in the mixing process, it might be found only partially mixed. It would be reasonable to conclude that, without outside intervention, the liquid reached this state because it was more ordered in the past, when there was greater separation, and will be more disordered, or mixed, in the future. Now imagine that the experiment is repeated, this time with only a few molecules, perhaps ten, in a very small container. One can easily imagine that by watching the random jostling of the molecules it might occur—by chance alone—that the molecules became neatly segregated, with all dye molecules on one side and all water molecules on the other. That this can be expected to occur from time to time can be concluded from the
fluctuation theorem The fluctuation theorem (FT), which originated from statistical mechanics, deals with the relative probability that the Entropy (statistical thermodynamics), entropy of a system which is currently away from thermodynamic equilibrium (i.e., maxim ...
; thus it is not impossible for the molecules to segregate themselves. However, for a large number of molecules it is so unlikely that one would have to wait, on average, many times longer than the current
age of the universe In physical cosmology, the age of the universe is the cosmological time, time elapsed since the Big Bang: 13.79 billion years. Astronomers have two different approaches to determine the age of the universe. One is based on a particle physics ...
for it to occur. Thus a movie that showed a large number of molecules segregating themselves as described above would appear unrealistic and one would be inclined to say that the movie was being played in reverse. See Boltzmann's second law as a law of disorder.


Mathematics of the arrow

The
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
behind the ''arrow of time'',
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, and basis of the
second law of thermodynamics The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
derive from the following set-up, as detailed by Carnot (1824), Clapeyron (1832), and Clausius (1854): Here, as common experience demonstrates, when a hot body ''T1'', such as a furnace, is put into physical contact, such as being connected via a body of fluid (
working body A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
), with a cold body ''T2'', such as a stream of cold water,
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
will invariably flow from hot to cold in the form of
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
''Q'', and given time the system will reach
equilibrium Equilibrium may refer to: Film and television * ''Equilibrium'' (film), a 2002 science fiction film * '' The Story of Three Loves'', also known as ''Equilibrium'', a 1953 romantic anthology film * "Equilibrium" (''seaQuest 2032'') * ''Equilibr ...
. Entropy, defined as Q/T, was conceived by
Rudolf Clausius Rudolf Julius Emanuel Clausius (; 2 January 1822 – 24 August 1888) was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics. By his restatement of Sadi Carnot's principle ...
as a function to measure the molecular
irreversibility In thermodynamics, an irreversible process is a process that cannot be undone. All complex natural processes are irreversible, although a phase transition at the coexistence temperature (e.g. melting of ice cubes in water) is well approximated a ...
of this process, i.e. the dissipative work the atoms and molecules do on each other during the transformation. In this diagram, one can calculate the entropy change Δ''S'' for the passage of the quantity of heat ''Q'' from the
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
''T1'', through the "working body" of fluid (see
heat engine A heat engine is a system that transfers thermal energy to do mechanical or electrical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, pa ...
), which was typically a body of steam, to the temperature ''T2''. Moreover, one could assume, for the sake of argument, that the working body contains only two molecules of water. Next, if we make the assignment, as originally done by Clausius: : S= \frac Then the entropy change or "equivalence-value" for this transformation is: : \Delta S = S_ - S_ \, which equals: : \Delta S = \left(\frac - \frac \right) and by factoring out Q, we have the following form, as was derived by Clausius: : \Delta S = Q\left(\frac - \frac \right) Thus, for example, if Q was 50 units, ''T1'' was initially 100 degrees, and ''T2'' was 1 degree, then the entropy change for this process would be 49.5. Hence, entropy increased for this process, the process took a certain amount of "time", and one can correlate entropy increase with the passage of time. For this system configuration, subsequently, it is an "absolute rule". This rule is based on the fact that all natural processes are irreversible by virtue of the fact that molecules of a system, for example two molecules in a tank, not only do external work (such as to push a piston), but also do internal work on each other, in proportion to the heat used to do work (see:
Mechanical equivalent of heat In the history of science, the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case, a given amount of work would generate the same amount of heat, provided the work done is totally convert ...
) during the process. Entropy accounts for the fact that internal inter-molecular friction exists.


Correlations

An important difference between the past and the future is that in any system (such as a gas of particles) its initial conditions are usually such that its different parts are uncorrelated, but as the system evolves and its different parts interact with each other, they become correlated. For example, whenever dealing with a gas of particles, it is always assumed that its initial conditions are such that there is no correlation between the states of different particles (i.e. the speeds and locations of the different particles are completely random, up to the need to conform with the
macrostate In statistical mechanics, a microstate is a specific configuration of a system that describes the precise positions and momenta of all the individual particles or components that make up the system. Each microstate has a certain probability of ...
of the system). This is closely related to the second law of thermodynamics: For example, in a finite system interacting with finite heat reservoirs, entropy is equivalent to system-reservoir correlations, and thus both increase together. Take for example (experiment A) a closed box that is, at the beginning, half-filled with ideal gas. As time passes, the gas obviously expands to fill the whole box, so that the final state is a box full of gas. This is an irreversible process, since if the box is full at the beginning (experiment B), it does not become only half-full later, except for the very unlikely situation where the gas particles have very special locations and speeds. But this is precisely because we always assume that the initial conditions in experiment B are such that the particles have random locations and speeds. This is not correct for the final conditions of the system in experiment A, because the particles have interacted between themselves, so that their locations and speeds have become dependent on each other, i.e. correlated. This can be understood if we look at experiment A backwards in time, which we'll call experiment C: now we begin with a box full of gas, but the particles do not have random locations and speeds; rather, their locations and speeds are so particular, that after some time they all move to one half of the box, which is the final state of the system (this is the initial state of experiment A, because now we're looking at the same experiment backwards!). The interactions between particles now do not create correlations between the particles, but in fact turn them into (at least seemingly) random, "canceling" the pre-existing correlations. The only difference between experiment C (which defies the Second Law of Thermodynamics) and experiment B (which obeys the Second Law of Thermodynamics) is that in the former the particles are uncorrelated at the end, while in the latter the particles are uncorrelated at the beginning. In fact, if all the microscopic physical processes are reversible (see discussion below), then the Second Law of Thermodynamics can be proven for any isolated system of particles with initial conditions in which the particles states are uncorrelated. To do this, one must acknowledge the difference between the measured entropy of a system—which depends only on its
macrostate In statistical mechanics, a microstate is a specific configuration of a system that describes the precise positions and momenta of all the individual particles or components that make up the system. Each microstate has a certain probability of ...
(its volume, temperature etc.)—and its
information entropy In information theory, the entropy of a random variable quantifies the average level of uncertainty or information associated with the variable's potential states or possible outcomes. This measures the expected amount of information needed ...
, which is the amount of information (number of computer bits) needed to describe the exact
microstate A microstate or ministate is a sovereign state having a very small population or land area, usually both. However, the meanings of "state" and "very small" are not well-defined in international law. Some recent attempts to define microstates ...
of the system. The measured entropy is independent of correlations between particles in the system, because they do not affect its macrostate, but the information entropy does depend on them, because correlations lower the randomness of the system and thus lowers the amount of information needed to describe it. Therefore, in the absence of such correlations the two entropies are identical, but otherwise the information entropy is smaller than the measured entropy, and the difference can be used as a measure of the amount of correlations. Now, by Liouville's theorem, time-reversal of all microscopic processes implies that the amount of information needed to describe the exact microstate of an isolated system (its information-theoretic joint entropy) is constant in time. This joint entropy is equal to the marginal entropy (entropy assuming no correlations) plus the entropy of correlation (mutual entropy, or its negative
mutual information In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual Statistical dependence, dependence between the two variables. More specifically, it quantifies the "Information conten ...
). If we assume no correlations between the particles initially, then this joint entropy is just the marginal entropy, which is just the initial thermodynamic entropy of the system, divided by the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
. However, if these are indeed the initial conditions (and this is a crucial assumption), then such correlations form with time. In other words, there is a decreasing mutual entropy (or increasing mutual information), and for a time that is not too long—the correlations (mutual information) between particles only increase with time. Therefore, the thermodynamic entropy, which is proportional to the marginal entropy, must also increase with time (note that "not too long" in this context is relative to the time needed, in a classical version of the system, for it to pass through all its possible microstates—a time that can be roughly estimated as \tau e^S, where \tau is the time between particle collisions and S is the system's entropy. In any practical case this time is huge compared to everything else). Note that the correlation between particles is not a fully objective quantity. One cannot measure the mutual entropy, one can only measure its change, assuming one can measure a microstate. Thermodynamics is restricted to the case where microstates cannot be distinguished, which means that only the marginal entropy, proportional to the thermodynamic entropy, can be measured, and, in a practical sense, always increases.


Arrow of time in various phenomena

Phenomena that occur differently according to their time direction can ultimately be linked to the second law of thermodynamics, for example ice cubes melt in hot coffee rather than assembling themselves out of the coffee and a block sliding on a rough surface slows down rather than speeds up. The idea that we can remember the past and not the future is called the "psychological arrow of time" and it has deep connections with
Maxwell's demon Maxwell's demon is a thought experiment that appears to disprove the second law of thermodynamics. It was proposed by the physicist James Clerk Maxwell in 1867. In his first letter, Maxwell referred to the entity as a "finite being" or a "being ...
and the physics of information; memory is linked to the second law of thermodynamics if one views it as correlation between brain cells (or computer bits) and the outer world: Since such correlations increase with time, memory is linked to past events, rather than to future events.


Current research

Current research focuses mainly on describing the thermodynamic arrow of time mathematically, either in classical or quantum systems, and on understanding its origin from the point of view of
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
boundary conditions In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satis ...
.


Dynamical systems

Some current research in
dynamical systems In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models ...
indicates a possible "explanation" for the arrow of time. There are several ways to describe the
time evolution Time evolution is the change of state brought about by the passage of time, applicable to systems with internal state (also called ''stateful systems''). In this formulation, ''time'' is not required to be a continuous parameter, but may be discr ...
of a dynamical system. In the classical framework, one considers an
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable (mathematics), variable. As with any other DE, its unknown(s) consists of one (or more) Function (mathematic ...
, where the parameter is explicitly time. By the very nature of differential equations, the solutions to such systems are inherently time-reversible. However, many of the interesting cases are either
ergodic In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies th ...
or mixing, and it is strongly suspected that mixing and ergodicity somehow underlie the fundamental mechanism of the arrow of time. While the strong suspicion may be but a fleeting sense of intuition, it cannot be denied that, when there are multiple parameters, the field of
partial differential equations In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how ...
comes into play. In such systems there is the
Feynman–Kac formula The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations and stochastic processes. In 1947, when Kac and Feynman were both faculty members at Cornell University, Kac ...
in play, which assures for specific cases, a one-to-one correspondence between specific linear
stochastic differential equation A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics an ...
and partial differential equation. Therefore, any partial differential equation system is tantamount to a random system of a single parameter, which is not reversible due to the aforementioned correspondence. Mixing and ergodic systems do not have exact solutions, and thus proving time irreversibility in a mathematical sense is () impossible. The concept of "exact" solutions is an
anthropic Anthropic PBC is an American artificial intelligence (AI) startup company founded in 2021. Anthropic has developed a family of large language models (LLMs) named Claude as a competitor to OpenAI's ChatGPT and Google's Gemini. According to the ...
one. Does "exact" mean the same as closed form in terms of already know expressions, or does it mean simply a single finite sequence of strokes of a/the writing utensil/human finger? There are myriad of systems known to humanity that are abstract and have recursive definitions but no non-self-referential notation currently exists. As a result of this complexity, it is natural to look elsewhere for different examples and perspectives. Some progress can be made by studying discrete-time models or
difference equation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
s. Many discrete-time models, such as the
iterated function In mathematics, an iterated function is a function that is obtained by composing another function with itself two or several times. The process of repeatedly applying the same function is called iteration. In this process, starting from some ...
s considered in popular fractal-drawing programs, are explicitly not time-reversible, as any given point "in the present" may have several different "pasts" associated with it: indeed, the set of all pasts is known as the
Julia set In complex dynamics, the Julia set and the Classification of Fatou components, Fatou set are two complement set, complementary sets (Julia "laces" and Fatou "dusts") defined from a function (mathematics), function. Informally, the Fatou set of ...
. Since such systems have a built-in irreversibility, it is inappropriate to use them to explain why time is not reversible. There are other systems that are chaotic, and are also explicitly time-reversible: among these is the baker's map, which is also exactly solvable. An interesting avenue of study is to examine solutions to such systems not by iterating the dynamical system over time, but instead, to study the corresponding Frobenius-Perron operator or
transfer operator In mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. In all usual cases, the largest eigenvalue is 1 ...
for the system. For some of these systems, it can be explicitly, mathematically shown that the transfer operators are not
trace-class In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a Trace (linear algebra), trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the t ...
. This means that these operators do not have a unique
eigenvalue In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
spectrum that is independent of the choice of basis. In the case of the baker's map, it can be shown that several unique and inequivalent diagonalizations or bases exist, each with a different set of eigenvalues. It is this phenomenon that can be offered as an "explanation" for the arrow of time. That is, although the iterated, discrete-time system is explicitly time-symmetric, the transfer operator is not. Furthermore, the transfer operator can be diagonalized in one of two inequivalent ways: one that describes the forward-time evolution of the system, and one that describes the backwards-time evolution. As of 2006, this type of time-
symmetry breaking In physics, symmetry breaking is a phenomenon where a disordered but Symmetry in quantum mechanics, symmetric state collapses into an ordered, but less symmetric state. This collapse is often one of many possible Bifurcation theory, bifurcatio ...
has been demonstrated for only a very small number of exactly-solvable, discrete-time systems. The transfer operator for more complex systems has not been consistently formulated, and its precise definition is mired in a variety of subtle difficulties. In particular, it has not been shown that it has a broken symmetry for the simplest exactly-solvable continuous-time ergodic systems, such as Hadamard's billiards, or the
Anosov flow In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold ''M'' is a certain type of mapping, from ''M'' to itself, with rather clearly marked local directions of "expansion" and "contr ...
on the tangent space of PSL(2,R).


Quantum mechanics

Research on irreversibility in quantum mechanics takes several different directions. One avenue is the study of
rigged Hilbert space In mathematics, a rigged Hilbert space (Gelfand triple, nested Hilbert space, equipped Hilbert space) is a construction designed to link the distribution and square-integrable aspects of functional analysis. Such spaces were introduced to study s ...
s, and in particular, how discrete and continuous eigenvalue spectra intermingle. For example, the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s are completely intermingled with the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, and yet have a unique, distinct set of properties. It is hoped that the study of Hilbert spaces with a similar inter-mingling will provide insight into the arrow of time. Another distinct approach is through the study of quantum chaos by which attempts are made to quantize systems as classically chaotic, ergodic or mixing. The results obtained are not dissimilar from those that come from the transfer operator method. For example, the quantization of the Boltzmann gas, that is, a gas of hard (elastic) point particles in a rectangular box reveals that the eigenfunctions are space-filling fractals that occupy the entire box, and that the energy eigenvalues are very closely spaced and have an "almost continuous" spectrum (for a finite number of particles in a box, the spectrum must be, of necessity, discrete). If the initial conditions are such that all of the particles are confined to one side of the box, the system very quickly evolves into one where the particles fill the entire box. Even when all of the particles are initially on one side of the box, their wave functions do, in fact, permeate the entire box: they constructively interfere on one side, and destructively interfere on the other. Irreversibility is then argued by noting that it is "nearly impossible" for the wave functions to be "accidentally" arranged in some unlikely state: such arrangements are a set of zero measure. Because the eigenfunctions are fractals, much of the language and machinery of entropy and statistical mechanics can be imported to discuss and argue the quantum case.


Cosmology

Some processes that involve high energy particles and are governed by the weak force (such as K-meson decay) defy the symmetry between time directions. However, all known physical processes ''do'' preserve a more complicated symmetry (
CPT symmetry Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and ...
), and are therefore unrelated to the second law of thermodynamics, or to the day-to-day experience of the arrow of time. A notable exception is the wave function collapse in
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, an irreversible process which is considered either real (by the
Copenhagen interpretation The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, stemming from the work of Niels Bohr, Werner Heisenberg, Max Born, and others. While "Copenhagen" refers to the Danish city, the use as an "interpretat ...
) or apparent only (by the
many-worlds interpretation The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is Philosophical realism, objectively real, and that there is no wave function collapse. This implies that all Possible ...
of quantum mechanics). In either case, the wave function collapse always follows
quantum decoherence Quantum decoherence is the loss of quantum coherence. It involves generally a loss of information of a system to its environment. Quantum decoherence has been studied to understand how quantum systems convert to systems that can be expla ...
, a process which is understood to be a result of the second law of thermodynamics. The universe was in a uniform, high density state at its very early stages, shortly after the Big Bang. The hot gas in the early universe was near thermodynamic equilibrium (see Horizon problem); in systems where gravitation plays a major role, this is a state of low entropy, due to the negative heat capacity of such systems (this is in contrary to non-gravitational systems where
thermodynamic equilibrium Thermodynamic equilibrium is a notion of thermodynamics with axiomatic status referring to an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable ...
is a state of maximum entropy). Moreover, due to its small volume compared to future epochs, the entropy was even lower as gas expansion increases its entropy. Thus the early universe can be considered to be highly ordered. Note that the uniformity of this early near-equilibrium state has been explained by the theory of
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
. According to this theory the universe (or, rather, its accessible part, a radius of 46 billion light years around Earth) evolved from a tiny, totally uniform volume (a portion of a much bigger universe), which expanded greatly; hence it was highly ordered. Fluctuations were then created by quantum processes related to its expansion, in a manner supposed to be such that these fluctuations went through quantum decoherence, so that they became uncorrelated for any practical use. This is supposed to give the desired initial conditions needed for the Second Law of Thermodynamics; different decoherent states ultimately evolved to different specific arrangements of galaxies and stars. The universe is apparently an open universe, so that its expansion will never terminate, but it is an interesting
thought experiment A thought experiment is an imaginary scenario that is meant to elucidate or test an argument or theory. It is often an experiment that would be hard, impossible, or unethical to actually perform. It can also be an abstract hypothetical that is ...
to imagine what would have happened had the universe been closed. In such a case, its expansion would stop at a certain time in the distant future, and then begin to shrink. Moreover, a closed universe is finite. It is unclear what would happen to the second law of thermodynamics in such a case. One could imagine at least two different scenarios, though in fact only the first one is plausible, as the other requires a highly smooth cosmic evolution, contrary to what is observed: * The broad consensus among the scientific community today is that smooth initial conditions lead to a highly non-smooth final state, and that this is in fact the source of the thermodynamic arrow of time. Gravitational systems tend to gravitationally collapse to compact bodies such as black holes (a phenomenon unrelated to wavefunction collapse), so the universe would end in a Big Crunch that is very different than a Big Bang run in reverse, since the distribution of the matter would be highly non-smooth; as the universe shrinks, such compact bodies merge to larger and larger black holes. It may even be that it is impossible for the universe to have both a smooth beginning and a smooth ending. Note that in this scenario the energy density of the universe in the final stages of its shrinkage is much larger than in the corresponding initial stages of its expansion (there is no
destructive interference In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater amplitude (constructive in ...
, unlike in the second scenario described below), and consists of mostly black holes rather than free particles. * A highly controversial view is that instead, the arrow of time will reverse. The quantum fluctuations—which in the meantime have evolved into galaxies and stars—will be in
superposition In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' and ''y'' would be any expression of the form ...
in such a way that the whole process described above is reversed—i.e., the fluctuations are erased by
destructive interference In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater amplitude (constructive in ...
and total uniformity is achieved once again. Thus the universe ends in a Big Crunch, which is similar to its beginning in the Big Bang. Because the two are totally symmetric, and the final state is very highly ordered, entropy must decrease close to the end of the universe, so that the second law of thermodynamics reverses when the universe shrinks. This can be understood as follows: in the very early universe, interactions between fluctuations created entanglement ( quantum correlations) between particles spread all over the universe; during the expansion, these particles became so distant that these correlations became negligible (see
quantum decoherence Quantum decoherence is the loss of quantum coherence. It involves generally a loss of information of a system to its environment. Quantum decoherence has been studied to understand how quantum systems convert to systems that can be expla ...
). At the time the expansion halts and the universe starts to shrink, such correlated particles arrive once again at contact (after circling around the universe), and the entropy starts to decrease—because highly correlated initial conditions may lead to a decrease in entropy. Another way of putting it, is that as distant particles arrive, more and more order is revealed because these particles are highly correlated with particles that arrived earlier. In this scenario, the cosmological
arrow of time An arrow is a fin-stabilized projectile launched by a bow. A typical arrow usually consists of a long, stiff, straight shaft with a weighty (and usually sharp and pointed) arrowhead attached to the front end, multiple fin-like stabilizers ca ...
is the reason for both the thermodynamic arrow of time and the quantum arrow of time. Both will slowly disappear as the universe will come to a halt, and will later be reversed. In the first and more consensual scenario, it is the difference between the initial state and the final state of the universe that is responsible for the thermodynamic arrow of time. This is independent of the cosmological arrow of time.


See also

*
Arrow of time An arrow is a fin-stabilized projectile launched by a bow. A typical arrow usually consists of a long, stiff, straight shaft with a weighty (and usually sharp and pointed) arrowhead attached to the front end, multiple fin-like stabilizers ca ...
*
Cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
*
Entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
*
H-theorem In classical statistical mechanics, the ''H''-theorem, introduced by Ludwig Boltzmann in 1872, describes the tendency of the quantity ''H'' (defined below) to decrease in a nearly-ideal gas of molecules.L. Boltzmann,Weitere Studien über das Wär ...
* History of entropy *
Loschmidt's paradox In physics, Loschmidt's paradox (named for Josef Loschmidt), also known as the reversibility paradox, irreversibility paradox, or ' (), is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics ...


References


Further reading

* * (technical). *
Dover has reprinted the monograph in 2003 (). For a short paper listing "the essential points of that argument, correcting presentation points that were confusing ... and emphasizing conclusions more forcefully than previously" see *


External links


Thermodynamic Asymmetry in Time
at the online
Stanford Encyclopedia of Philosophy The ''Stanford Encyclopedia of Philosophy'' (''SEP'') is a freely available online philosophy resource published and maintained by Stanford University, encompassing both an online encyclopedia of philosophy and peer-reviewed original publication ...
{{DEFAULTSORT:Entropy (Arrow Of Time) Thermodynamic entropy Asymmetry