In
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, electro-osmotic flow (EOF,
hyphen
The hyphen is a punctuation mark used to join words and to separate syllables of a single word. The use of hyphens is called hyphenation.
The hyphen is sometimes confused with dashes (en dash , em dash and others), which are wider, or with t ...
optional; synonymous with electro-osmosis or electro-endosmosis) is the motion of liquid induced by an applied
potential
Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple r ...
across a
porous material,
capillary tube
Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
The effect can be see ...
,
membrane
A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
,
microchannel, or any other fluid conduit. Because electro-
osmotic
Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region o ...
velocities are independent of conduit size, as long as the
electrical double layer
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
is much smaller than the
characteristic length
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by ...
scale of the channel, electro-osmotic flow will have little effect. Electro-osmotic flow is most significant when in small channels, and is an essential component in chemical separation techniques, notably
capillary electrophoresis
Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels. Very often, CE refers to capillary zone electrophoresis (CZE), but other electr ...
. Electro-osmotic flow can occur in natural unfiltered water, as well as
buffered solutions.
History
Electro-osmotic flow was first reported in 1807 by
Ferdinand Friedrich Reuss (18 February 1778 (Tübingen, Germany) – 14 April 1852 (Stuttgart, Germany)) in an unpublished lecture before the Physical-Medical Society of Moscow; Reuss first published an account of electro-osmotic flow in 1809 in the ''Memoirs of the
Imperial Society of Naturalists of Moscow''. He showed that water could be made to flow through a plug of
clay
Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolinite, ). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impuriti ...
by applying an electric voltage. Clay is composed of closely packed particles of silica and other minerals, and water flows through the narrow spaces between these particles just as it would through a narrow glass tube. Any combination of an
electrolyte
An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
(a fluid containing dissolved ions) and an insulating solid would generate electro-osmotic flow, though for water/
silica
Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant f ...
the effect is particularly large. Even so, flow speeds are typically only a few millimeters per second.
Electro-osmosis was discovered independently in 1814 by the English chemist
Robert Porrett Jr. (1783–1868).
Cause
Electroosmotic flow is caused by the
Coulomb force
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the ''electrostatic ...
induced by an
electric field
An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
on net mobile
electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
in a solution. Because the
chemical equilibrium
In a chemical reaction, chemical equilibrium is the state in which both the Reagent, reactants and Product (chemistry), products are present in concentrations which have no further tendency to change with time, so that there is no observable chan ...
between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an
electrical double layer
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
or Debye layer, forms in the region near the interface. When an electric field is applied to the fluid (usually via electrodes placed at inlets and outlets), the net charge in the electrical double layer is induced to move by the resulting Coulomb force. The resulting flow is termed electroosmotic flow.
Description
The resulting flow from applying a voltage is a
plug flow
In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. ...
. Unlike a parabolic profile flow generated from a pressure differential, a plug flow’s velocity profile is approximately planar, with slight variation near the electric double layer. This offers significantly less deleterious dispersive effects and can be controlled without valves, offering a high-performance method for fluid separation, although many complex factors prove this control to be difficult. Because of difficulties measuring and monitoring flow in microfluidic channels, primarily disrupting the flow pattern, most analysis is done through numerical methods and simulation.
Electroosmotic flow through microchannels can be modeled after the Navier-Stokes equation with the driving force deriving from the electric field and the pressure differential. Thus it is governed by the
continuity equation
A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity ...
:
and
momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
:
where is the velocity vector, is the density of the fluid,
is the
material derivative
In continuum mechanics, the material derivative describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material de ...
, is the viscosity of the fluid, is the electric charge density, is the applied electric field, is the electric field due to the
zeta potential
Zeta potential is the electrical potential at the slipping plane. This plane is the interface which separates mobile fluid from fluid that remains attached to the surface.is a scientific term for Electrokinetic phenomena, electrokinetic Electric ...
at the walls and is the fluid pressure.
Laplace’s equation can describe the external electric field
:
while the potential within the electric double layer is governed by
:
where is the dielectric constant of the electrolyte solution and is the
vacuum permittivity
Vacuum permittivity, commonly denoted (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric const ...
. This equation can be further simplified using the
Debye-Hückel approximation
:
where is the
Debye length, used to describe the characteristic thickness of the electric double layer. The equations for potential field within the double layer can be combined as
:
The transport of ions in space can be modeled using the
Nernst–Planck equation:
: