HOME

TheInfoList



OR:

Dirac cones, named after
Paul Dirac Paul Adrien Maurice Dirac (; 8 August 1902 – 20 October 1984) was an English theoretical physicist who is regarded as one of the most significant physicists of the 20th century. He was the Lucasian Professor of Mathematics at the Univer ...
, are features that occur in some
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or ...
s that describe unusual electron transport properties of materials like
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
and
topological insulators A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material. A topological insulator is an ...
. In these materials, at energies near the
Fermi level The Fermi level of a solid-state body is the thermodynamic work required to add one electron to the body. It is a thermodynamic quantity usually denoted by ''µ'' or ''E''F for brevity. The Fermi level does not include the work required to remov ...
, the valence band and conduction band take the shape of the upper and lower halves of a
conical surface In geometry, a (general) conical surface is the unbounded surface formed by the union of all the straight lines that pass through a fixed point — the ''apex'' or ''vertex'' — and any point of some fixed space curve — the ''d ...
, meeting at what are called Dirac points.


Description

In
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, Dirac cones are a kind of crossing-point which electrons avoid, where the energy of the valence and conduction bands are not equal anywhere in two dimensional lattice -space, except at the zero dimensional Dirac points. As a result of the cones, electrical conduction can be described by the movement of
charge carriers In physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. The term is use ...
which are massless
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
s, a situation which is handled theoretically by the relativistic
Dirac equation In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin- massive particles, called "Dirac p ...
. The massless fermions lead to various
quantum Hall effect The quantum Hall effect (or integer quantum Hall effect) is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance exhi ...
s, magnetoelectric effects in topological materials, and ultra high carrier mobility. Dirac cones were observed in 2008-2009, using
angle-resolved photoemission spectroscopy Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a crystalline solid. It is based on the photoel ...
(ARPES) on the potassium- graphite intercalation compound KC8. and on several bismuth-based alloys. As an object with three dimensions, Dirac cones are a feature of two-dimensional materials or surface states, based on a linear
dispersion relation In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given ...
between energy and the two components of the
crystal momentum In solid-state physics crystal momentum or quasimomentum is a momentum-like vector associated with electrons in a crystal lattice. It is defined by the associated wave vectors \mathbf of this lattice, according to :_ \equiv \hbar (where \hbar i ...
x and y. However, this concept can be extended to three dimensions, where Dirac semimetals are defined by a linear dispersion relation between energy and x, y, and z. In -space, this shows up as a hypercone, which have doubly degenerate bands which also meet at Dirac points. Dirac semimetals contain both time reversal and spatial inversion symmetry; when one of these is broken, the Dirac points are split into two constituent Weyl points, and the material becomes a Weyl semimetal. In 2014, direct observation of the Dirac semimetal band structure using ARPES was conducted on the Dirac semimetal cadmium arsenide.


Analog systems

Dirac points have been realized in many physical areas such as
plasmonics Plasmonics or nanoplasmonics refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by photonics, plasmonics follows the trend of miniaturizing op ...
, phononics, or
nanophotonics Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. It ...
(microcavities, photonic crystals).


See also

* Dirac matter


References


Further reading

* * * * * * Electronic band structures {{quantum-stub