Dedekind cut
   HOME

TheInfoList



OR:

In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind (but previously considered by
Joseph Bertrand Joseph Louis François Bertrand (; 11 March 1822 – 5 April 1900) was a French mathematician who worked in the fields of number theory, differential geometry, probability theory, economics and thermodynamics. Biography Joseph Bertrand was ...
), are а method of
construction of the real numbers In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ...
from the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s. A Dedekind cut is a
partition Partition may refer to: Computing Hardware * Disk partitioning, the division of a hard disk drive * Memory partition, a subdivision of a computer's memory, usually for use by a single job Software * Partition (database), the division of a ...
of the rational numbers into two sets ''A'' and ''B'', such that each element of ''A'' is less than every element of ''B'', and ''A'' contains no
greatest element In mathematics, especially in order theory, the greatest element of a subset S of a partially ordered set (poset) is an element of S that is greater than every other element of S. The term least element is defined dually, that is, it is an elem ...
. The set ''B'' may or may not have a smallest element among the rationals. If ''B'' has a smallest element among the rationals, the cut corresponds to that rational. Otherwise, that cut defines a unique
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
which, loosely speaking, fills the "gap" between ''A'' and ''B''. In other words, ''A'' contains every rational number less than the cut, and ''B'' contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set. Every real number, rational or not, is equated to one and only one cut of rationals. Dedekind cuts can be generalized from the rational numbers to any
totally ordered set In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive) ...
by defining a Dedekind cut as a partition of a totally ordered set into two non-empty parts ''A'' and ''B'', such that ''A'' is closed downwards (meaning that for all ''a'' in ''A'', ''x'' ≤ ''a'' implies that ''x'' is in ''A'' as well) and ''B'' is closed upwards, and ''A'' contains no greatest element. See also
completeness (order theory) In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the ter ...
. It is straightforward to show that a Dedekind cut among the real numbers is uniquely defined by the corresponding cut among the rational numbers. Similarly, every cut of reals is identical to the cut produced by a specific real number (which can be identified as the smallest element of the ''B'' set). In other words, the
number line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
where every
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
is defined as a Dedekind cut of rationals is a complete continuum without any further gaps.


Definition

A Dedekind cut is a partition of the rationals \mathbb into two subsets A and B such that # A is nonempty. # A \neq \mathbb (equivalently, B is nonempty). # If x, y \in \mathbb, x < y , and y \in A , then x \in A . (A is "closed downwards".) # If x \in A , then there exists a y \in A such that y > x . (A does not contain a greatest element.) By omitting the first two requirements, we formally obtain the extended real number line.


Representations

It is more symmetrical to use the (''A'', ''B'') notation for Dedekind cuts, but each of ''A'' and ''B'' does determine the other. It can be a simplification, in terms of notation if nothing more, to concentrate on one "half" — say, the lower one — and call any downward-closed set ''A'' without greatest element a "Dedekind cut". If the ordered set ''S'' is complete, then, for every Dedekind cut (''A'', ''B'') of ''S'', the set ''B'' must have a minimal element ''b'', hence we must have that ''A'' is the interval (−∞, ''b''), and ''B'' the interval [''b'', +∞). In this case, we say that ''b'' ''is represented by'' the cut (''A'', ''B''). The important purpose of the Dedekind cut is to work with number sets that are ''not'' complete. The cut itself can represent a number not in the original collection of numbers (most often
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s). The cut can represent a number ''b'', even though the numbers contained in the two sets ''A'' and ''B'' do not actually include the number ''b'' that their cut represents. For example if ''A'' and ''B'' only contain rational numbers, they can still be cut at \sqrt by putting every negative rational number in ''A'', along with every non-negative rational number whose square is less than 2; similarly ''B'' would contain every positive rational number whose square is greater than or equal to 2. Even though there is no rational value for \sqrt, if the rational numbers are partitioned into ''A'' and ''B'' this way, the partition itself represents an
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
.


Ordering of cuts

Regard one Dedekind cut (''A'', ''B'') as ''less than'' another Dedekind cut (''C'', ''D'') (of the same superset) if ''A'' is a proper subset of ''C''. Equivalently, if ''D'' is a proper subset of ''B'', the cut (''A'', ''B'') is again ''less than'' (''C'', ''D''). In this way, set inclusion can be used to represent the ordering of numbers, and all other relations (''greater than'', ''less than or equal to'', ''equal to'', and so on) can be similarly created from set relations. The set of all Dedekind cuts is itself a linearly ordered set (of sets). Moreover, the set of Dedekind cuts has the
least-upper-bound property In mathematics, the least-upper-bound property (sometimes called completeness or supremum property or l.u.b. property) is a fundamental property of the real numbers. More generally, a partially ordered set has the least-upper-bound property if ev ...
, i.e., every nonempty subset of it that has any upper bound has a ''least'' upper bound. Thus, constructing the set of Dedekind cuts serves the purpose of embedding the original ordered set ''S'', which might not have had the least-upper-bound property, within a (usually larger) linearly ordered set that does have this useful property.


Construction of the real numbers

A typical Dedekind cut of the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s \Q is given by the partition (A,B) with :A = \, :B = \. This cut represents the
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
\sqrt in Dedekind's construction. The essential idea is that we use a set A, which is the set of all rational numbers whose squares are less than 2, to "represent" number \sqrt, and further, by defining properly arithmetic operators over these sets (addition, subtraction, multiplication, and division), these sets (together with these arithmetic operations) form the familiar real numbers. To establish this, one must show that A really is a cut (according to the definition) and the square of A, that is A \times A (please refer to the link above for the precise definition of how the multiplication of cuts is defined), is 2 (note that rigorously speaking this number 2 is represented by a cut \). To show the first part, we show that for any positive rational x with x^2 < 2, there is a rational y with x < y and y^2 < 2. The choice y=\frac works, thus A is indeed a cut. Now armed with the multiplication between cuts, it is easy to check that A \times A \le 2 (essentially, this is because x \times y \le 2, \forall x, y \in A, x, y \ge 0). Therefore to show that A \times A = 2, we show that A \times A \ge 2, and it suffices to show that for any r < 2, there exists x \in A, x^2 > r. For this we notice that if x > 0, 2-x^2=\epsilon > 0, then 2-y^2 \le \frac for the y constructed above, this means that we have a sequence in A whose square can become arbitrarily close to 2, which finishes the proof. Note that the equality cannot hold since \sqrt is not rational.


Relation to interval arithmetic

Given a Dedekind cut representing the real number r by splitting the rationals into (A,B) where rationals in A are less than r and rationals in B are greater than r, it can be equivalently represented as the set of pairs (a,b) with a \in A and b \in B, with the lower cut and the upper cut being given by projections. This corresponds exactly to the set of intervals approximating r. This allows the basic arithmetic operations on the real numbers to be defined in terms of
interval arithmetic Interval arithmetic (also known as interval mathematics, interval analysis, or interval computation) is a mathematical technique used to put bounds on rounding errors and measurement errors in mathematical computation. Numerical methods usin ...
. This property and its relation with real numbers given only in terms of A and B is particularly important in weaker foundations such as
constructive analysis In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics. This contrasts with ''classical analysis'', which (in this context) simply means analysis done according to the (more com ...
.


Generalizations


Arbitrary linearly ordered sets

In the general case of an arbitrary linearly ordered set ''X'', a cut is a pair (A,B) such that A \cup B = X and a \in A, b \in B imply a < b. Some authors add the requirement that both ''A'' and ''B'' are nonempty. If neither ''A'' has a maximum, nor ''B'' has a minimum, the cut is called a gap. A linearly ordered set endowed with the order topology is compact if and only if it has no gap.Jun-Iti Nagata, Modern General Topology, Second revised edition, Theorem VIII.2, p. 461. Actually, the theorem holds in the setting of generalized ordered spaces, but in this more general setting pseudo-gaps should be taken into account.


Surreal numbers

A construction resembling Dedekind cuts is used for (one among many possible) constructions of
surreal number In mathematics, the surreal number system is a totally ordered proper class containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals ...
s. The relevant notion in this case is a Cuesta-Dutari cut, named after the Spanish mathematician .


Partially ordered sets

More generally, if ''S'' is a
partially ordered set In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a bina ...
, a ''completion'' of ''S'' means a complete lattice ''L'' with an order-embedding of ''S'' into ''L''. The notion of ''complete lattice'' generalizes the least-upper-bound property of the reals. One completion of ''S'' is the set of its ''downwardly closed'' subsets, ordered by
inclusion Inclusion or Include may refer to: Sociology * Social inclusion, aims to create an environment that supports equal opportunity for individuals and groups that form a society. ** Inclusion (disability rights), promotion of people with disabiliti ...
. A related completion that preserves all existing sups and infs of ''S'' is obtained by the following construction: For each subset ''A'' of ''S'', let ''A''u denote the set of upper bounds of ''A'', and let ''A''l denote the set of lower bounds of ''A''. (These operators form a Galois connection.) Then the
Dedekind–MacNeille completion In mathematics, specifically order theory, the Dedekind–MacNeille completion of a partially ordered set is the smallest complete lattice that contains it. It is named after Holbrook Mann MacNeille whose 1937 paper first defined and constructed ...
of ''S'' consists of all subsets ''A'' for which (''A''u)l = ''A''; it is ordered by inclusion. The Dedekind-MacNeille completion is the smallest complete lattice with ''S'' embedded in it.


Notes


References

*Dedekind, Richard, ''Essays on the Theory of Numbers'', "Continuity and Irrational Numbers," Dover Publications: New York, . Als
available
at Project Gutenberg.


External links

* {{Rational numbers Order theory Rational numbers Real numbers