Cantor's diagonal argument
   HOME

TheInfoList



OR:

In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers. English translation: Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began. The diagonal argument was not Cantor's first proof of the uncountability of the real numbers, which appeared in 1874. However, it demonstrates a general technique that has since been used in a wide range of proofs, including the first of
Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research i ...
and Turing's answer to the '' Entscheidungsproblem''. Diagonalization arguments are often also the source of contradictions like Russell's paradox and Richard's paradox.


Uncountable set

Cantor considered the set ''T'' of all infinite sequences of
binary digits The bit is the most basic unit of information in computing and digital communications. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented a ...
(i.e. each digit is zero or one).Cantor used "''m'' and "''w''" instead of "0" and "1", "''M''" instead of "''T''", and "''E''''i''" instead of "''s''''i''". He begins with a constructive proof of the following
lemma Lemma may refer to: Language and linguistics * Lemma (morphology), the canonical, dictionary or citation form of a word * Lemma (psycholinguistics), a mental abstraction of a word about to be uttered Science and mathematics * Lemma (botany), a ...
: :If ''s''1, ''s''2, ... , ''s''''n'', ... is any enumeration of elements from ''T'',Cantor does not assume that every element of ''T'' is in this enumeration. then an element ''s'' of ''T'' can be constructed that doesn't correspond to any ''s''''n'' in the enumeration. The proof starts with an enumeration of elements from ''T'', for example : Next, a sequence ''s'' is constructed by choosing the 1st digit as complementary to the 1st digit of ''s''''1'' (swapping 0s for 1s and vice versa), the 2nd digit as complementary to the 2nd digit of ''s''''2'', the 3rd digit as complementary to the 3rd digit of ''s''''3'', and generally for every ''n'', the ''n''th digit as complementary to the ''n''th digit of ''s''''n''. For the example above, this yields : By construction, ''s'' is a member of ''T'' that differs from each ''s''''n'', since their ''n''th digits differ (highlighted in the example). Hence, ''s'' cannot occur in the enumeration. Based on this lemma, Cantor then uses a proof by contradiction to show that: :The set ''T'' is uncountable. The proof starts by assuming that ''T'' is countable. Then all its elements can be written in an enumeration ''s''1, ''s''2, ... , ''s''''n'', ... . Applying the previous lemma to this enumeration produces a sequence ''s'' that is a member of ''T'', but is not in the enumeration. However, if ''T'' is enumerated, then every member of ''T'', including this ''s'', is in the enumeration. This contradiction implies that the original assumption is false. Therefore, ''T'' is uncountable.


Real numbers

The uncountability of the real numbers was already established by Cantor's first uncountability proof, but it also follows from the above result. To prove this, an injection will be constructed from the set ''T'' of infinite binary strings to the set R of real numbers. Since ''T'' is uncountable, the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
of this function, which is a subset of R, is uncountable. Therefore, R is uncountable. Also, by using a method of construction devised by Cantor, a
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
will be constructed between ''T'' and R. Therefore, ''T'' and R have the same cardinality, which is called the "
cardinality of the continuum In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mathb ...
" and is usually denoted by \mathfrak or 2^. An injection from ''T'' to R is given by mapping binary strings in ''T'' to decimal fractions, such as mapping ''t'' = 0111... to the decimal 0.0111.... This function, defined by , is an injection because it maps different strings to different numbers.While 0.0111... and 0.1000... would be equal if interpreted as binary fractions (destroying injectivity), they are different when interpreted as decimal fractions, as is done by ''f''. On the other hand, since ''t'' is a binary string, the equality 0.0999... = 0.1000... of decimal fractions is not relevant here. Constructing a bijection between ''T'' and R is slightly more complicated. Instead of mapping 0111... to the decimal 0.0111..., it can be mapped to the base ''b'' number: 0.0111...''b''. This leads to the family of functions: . The functions are injections, except for . This function will be modified to produce a bijection between ''T'' and R.


General sets

A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set ''S'', the power set of ''S''—that is, the set of all
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
s of ''S'' (here written as ''P''(''S''))—cannot be in bijection with ''S'' itself. This proof proceeds as follows: Let ''f'' be any function from ''S'' to ''P''(''S''). It suffices to prove ''f'' cannot be
surjective In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
. That means that some member ''T'' of ''P''(''S''), i.e. some subset of ''S'', is not in the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
of ''f''. As a candidate consider the set: :''T'' = . For every ''s'' in ''S'', either ''s'' is in ''T'' or not. If ''s'' is in ''T'', then by definition of ''T'', ''s'' is not in ''f''(''s''), so ''T'' is not equal to ''f''(''s''). On the other hand, if ''s'' is not in ''T'', then by definition of ''T'', ''s'' is in ''f''(''s''), so again ''T'' is not equal to ''f''(''s''); cf. picture. For a more complete account of this proof, see Cantor's theorem.


Consequences


Ordering of cardinals

Cantor defines an order relation of cardinalities, e.g. , S, and , T, , in terms of the existence of injections between the underlying sets, S and T. The argument in the previous paragraph then proved that sets such as \to\ are uncountable, which is to say \neg(, \to\, \le, , ), and we can embed the naturals into the function space, so that we have that , , <, \to\, . In the context of
classical mathematics In the foundations of mathematics, classical mathematics refers generally to the mainstream approach to mathematics, which is based on classical logic and ZFC set theory. It stands in contrast to other types of mathematics such as constructive m ...
, this exhausts the possibilities and the diagonal argument can thus be used to establish that, for example, although both sets under consideration are infinite, there are actually ''more'' infinite sequences of ones and zeros than there are natural numbers. Cantor's result then also implies that the notion of the set of all sets is inconsistent: If ''S'' were the set of all sets, then ''P''(''S'') would at the same time be bigger than ''S'' and a subset of ''S''. Assuming the law of excluded middle, every subcountable set (a property in terms of surjections) is also already countable. In Constructive mathematics, it is harder or impossible to order ordinals and also cardinals. For example, the Schröder–Bernstein theorem requires the law of excluded middle. Therefore, intuitionists do not accept the theorem about the cardinal ordering. The ordering on the reals (the standard ordering extending that of the rational numbers) is also not necessarily decidable. Neither are most properties of interesting classes of functions decidable, by Rice's theorem, i.e. the right set of counting numbers for the subcountable sets may not be recursive. In a set theory, theories of mathematics are modeled. For example, in set theory, "the" set of real numbers is identified as a set that fulfills some axioms of real numbers. Various models have been studied, such as the Dedekind reals or the Cauchy reals. Weaker axioms mean less constraints and so allow for a richer class of models. Consequently, in an otherwise constructive context (law of excluded middle not taken as axiom), it is consistent to adopt non-classical axioms that contradict consequences of the law of excluded middle. For example, the uncountable space of functions \to\ may be asserted to be subcountable, a notion of size orthogonal to the statement , , <, \to\, . In such a context, the subcountability of all sets is possible, or injections from the uncountable ^ into .Bauer, A.
An injection from N^N to N
, 2011


Open questions

Motivated by the insight that the set of real numbers is "bigger" than the set of natural numbers, one is led to ask if there is a set whose
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
is "between" that of the integers and that of the reals. This question leads to the famous continuum hypothesis. Similarly, the question of whether there exists a set whose cardinality is between , ''S'', and , ''P''(''S''), for some infinite ''S'' leads to the generalized continuum hypothesis.


Diagonalization in broader context

Russell's paradox has shown that
naive set theory Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike Set theory#Axiomatic set theory, axiomatic set theories, which are defined using Mathematical_logic#Formal_logical_systems, forma ...
, based on an unrestricted comprehension scheme, is contradictory. Note that there is a similarity between the construction of ''T'' and the set in Russell's paradox. Therefore, depending on how we modify the axiom scheme of comprehension in order to avoid Russell's paradox, arguments such as the non-existence of a set of all sets may or may not remain valid. Analogues of the diagonal argument are widely used in mathematics to prove the existence or nonexistence of certain objects. For example, the conventional proof of the unsolvability of the halting problem is essentially a diagonal argument. Also, diagonalization was originally used to show the existence of arbitrarily hard complexity classes and played a key role in early attempts to prove P does not equal NP.


Version for Quine's New Foundations

The above proof fails for W. V. Quine's "
New Foundations In mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of ''Principia Mathematica''. Quine first proposed NF in a 1937 article titled "New Foundations ...
" set theory (NF). In NF, the naive axiom scheme of comprehension is modified to avoid the paradoxes by introducing a kind of "local" type theory. In this axiom scheme, : is ''not'' a set — i.e., does not satisfy the axiom scheme. On the other hand, we might try to create a modified diagonal argument by noticing that : ''is'' a set in NF. In which case, if ''P''1(''S'') is the set of one-element subsets of ''S'' and ''f'' is a proposed bijection from ''P''1(''S'') to ''P''(''S''), one is able to use proof by contradiction to prove that , ''P''1(''S''), < , ''P''(''S''), . The proof follows by the fact that if ''f'' were indeed a map ''onto'' ''P''(''S''), then we could find ''r'' in ''S'', such that ''f''() coincides with the modified diagonal set, above. We would conclude that if ''r'' is not in ''f''(), then ''r'' is in ''f''() and vice versa. It is ''not'' possible to put ''P''1(''S'') in a one-to-one relation with ''S'', as the two have different types, and so any function so defined would violate the typing rules for the comprehension scheme.


See also

* Cantor's first uncountability proof *
Controversy over Cantor's theory In mathematical logic, the theory of infinite sets was first developed by Georg Cantor. Although this work has become a thoroughly standard fixture of classical set theory, it has been criticized in several areas by mathematicians and philosophers ...
* Diagonal lemma


Notes


References


External links


Cantor's Diagonal Proof
at MathPages * {{DEFAULTSORT:Cantor's Diagonal Argument Set theory Theorems in the foundations of mathematics Mathematical proofs Infinity Arguments Cardinal numbers Georg Cantor