Complete Partial Order
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the phrase complete partial order is variously used to refer to at least three similar, but distinct, classes of
partially ordered set In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
s, characterized by particular completeness properties. Complete partial orders play a central role in
theoretical computer science Theoretical computer science is a subfield of computer science and mathematics that focuses on the Abstraction, abstract and mathematical foundations of computation. It is difficult to circumscribe the theoretical areas precisely. The Associati ...
: in
denotational semantics In computer science, denotational semantics (initially known as mathematical semantics or Scott–Strachey semantics) is an approach of formalizing the meanings of programming languages by constructing mathematical objects (called ''denotations'' ...
and
domain theory Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer ...
.


Definitions

The term complete partial order, abbreviated cpo, has several possible meanings depending on context. A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a
supremum In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, ...
. (A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset.) In the literature, dcpos sometimes also appear under the label up-complete poset. A pointed directed-complete partial order (pointed dcpo, sometimes abbreviated cppo), is a dcpo with a least element (usually denoted \bot). Formulated differently, a pointed dcpo has a supremum for every directed ''or empty'' subset. The term chain-complete partial order is also used, because of the characterization of pointed dcpos as posets in which every chain has a supremum. A related notion is that of ω-complete partial order (ω-cpo). These are posets in which every ω-chain (x_1 \leq x_2 \leq x_3 \leq ...) has a supremum that belongs to the poset. The same notion can be extended to other cardinalities of chains. Every dcpo is an ω-cpo, since every ω-chain is a directed set, but the converse is not true. However, every ω-cpo with a basis is also a dcpo (with the same basis). An ω-cpo (dcpo) with a basis is also called a continuous ω-cpo (or continuous dcpo). Note that ''complete partial order'' is never used to mean a poset in which ''all'' subsets have suprema; the terminology complete lattice is used for this concept. Requiring the existence of directed suprema can be motivated by viewing directed sets as generalized approximation sequences and suprema as ''limits'' of the respective (approximative) computations. This intuition, in the context of denotational semantics, was the motivation behind the development of
domain theory Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer ...
. The dual notion of a directed-complete partial order is called a filtered-complete partial order. However, this concept occurs far less frequently in practice, since one usually can work on the dual order explicitly. By analogy with the
Dedekind–MacNeille completion In mathematics, specifically order theory, the Dedekind–MacNeille completion of a partially ordered set is the smallest complete lattice that contains it. It is named after Holbrook Mann MacNeille whose 1937 paper first defined and constructe ...
of a partially ordered set, every partially ordered set can be extended uniquely to a minimal dcpo.


Examples

* Every finite poset is directed complete. * All complete lattices are also directed complete. * For any poset, the set of all non-empty
filters Filtration is a physical process that separates solid matter and fluid from a mixture. Filter, filtering, filters or filtration may also refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Fil ...
, ordered by subset inclusion, is a dcpo. Together with the empty filter it is also pointed. If the order has binary meets, then this construction (including the empty filter) actually yields a complete lattice. * Every set ''S'' can be turned into a pointed dcpo by adding a least element ⊥ and introducing a flat order with ⊥ ≤ ''s'' and s ≤ ''s'' for every ''s'' in ''S'' and no other order relations. * The set of all
partial function In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain ...
s on some given set ''S'' can be ordered by defining ''f'' ≤ ''g'' if and only if ''g'' extends ''f'', i.e. if the domain of ''f'' is a subset of the domain of ''g'' and the values of ''f'' and ''g'' agree on all inputs for which they are both defined. (Equivalently, ''f'' ≤ ''g'' if and only if ''f'' ⊆ ''g'' where ''f'' and ''g'' are identified with their respective graphs.) This order is a pointed dcpo, where the least element is the nowhere-defined partial function (with empty domain). In fact, ≤ is also bounded complete. This example also demonstrates why it is not always natural to have a greatest element. * The set of all
linearly independent In the theory of vector spaces, a set of vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concep ...
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
s of a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
''V'', ordered by inclusion. * The set of all partial choice functions on a collection of non-empty sets, ordered by restriction. * The set of all
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
s of a ring, ordered by inclusion. * The specialization order of any
sober space In mathematics, a sober space is a topological space ''X'' such that every (nonempty) irreducible space, irreducible closed subset of ''X'' is the closure (topology), closure of exactly one point of ''X'': that is, every nonempty irreducible close ...
is a dcpo. * Let us use the term “
deductive system A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms. In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in math ...
” as a set of
sentences The ''Sentences'' (. ) is a compendium of Christian theology written by Peter Lombard around 1150. It was the most important religious textbook of the Middle Ages. Background The sentence genre emerged from works like Prosper of Aquitaine's ...
closed under consequence (for defining notion of consequence, let us use e.g.
Alfred Tarski Alfred Tarski (; ; born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician ...
's algebraic approachTarski, Alfred: Bizonyítás és igazság / Válogatott tanulmányok. Gondolat, Budapest, 1990. (Title means: Proof and truth / Selected papers.)Stanley N. Burris
and H.P. Sankappanavar

/ref>). There are interesting theorems that concern a set of deductive systems being a directed-complete partial ordering.See online in p. 24 exercises 5–6 of §5 i

Or, on paper, see #_note-Tar-BizIg, Tar:BizIg.
Also, a set of deductive systems can be chosen to have a least element in a natural way (so that it can be also a pointed dcpo), because the set of all consequences of the empty set (i.e. “the set of the logically provable/logically valid sentences”) is (1) a deductive system (2) contained by all deductive systems.


Characterizations

An ordered set is a dcpo if and only if every non-empty chain has a supremum. As a corollary, an ordered set is a pointed dcpo if and only if every (possibly empty) chain has a supremum, i.e., if and only if it is chain-complete. Proofs rely on the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
. Alternatively, an ordered set P is a pointed dcpo if and only if every
order-preserving In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of ord ...
self-map of P has a least fixpoint.


Continuous functions and fixed-points

A function ''f'' between two dcpos ''P'' and ''Q'' is called (Scott) continuous if it maps directed sets to directed sets while preserving their suprema: * f(D) \subseteq Q is directed for every directed D \subseteq P. * f(\sup D) = \sup f(D) for every directed D \subseteq P. Note that every continuous function between dcpos is a
monotone function In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of ord ...
. This notion of continuity is equivalent to the topological continuity induced by the Scott topology. The set of all continuous functions between two dcpos ''P'' and ''Q'' is denoted /nowiki>''P'' → ''Q''/nowiki>. Equipped with the pointwise order, this is again a dcpo, and pointed whenever ''Q'' is pointed. Thus the complete partial orders with Scott-continuous maps form a cartesian closed
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
. Barendregt, Henk
''The lambda calculus, its syntax and semantics''
, North-Holland (1984)
Every order-preserving self-map ''f'' of a pointed dcpo (''P'', ⊥) has a least fixed-point. If ''f'' is continuous then this fixed-point is equal to the supremum of the iterates (⊥, ''f''(⊥), ''f''(''f''(⊥)), … ''f'' ''n''(⊥), …) of ⊥ (see also the Kleene fixed-point theorem). Another fixed point theorem is the Bourbaki–Witt theorem, stating that if f is a function from a dcpo to itself with the property that f(x) \geq x for all x, then f has a fixed point. This theorem, in turn, can be used to prove that
Zorn's lemma Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least on ...
is a consequence of the axiom of choice..


See also

* Algebraic posets * Scott topology * Completeness


Notes


References

* {{DEFAULTSORT:Complete Partial Order Order theory ru:Частично упорядоченное множество#Полное частично упорядоченное множество