Bourbaki–Witt Theorem
   HOME





Bourbaki–Witt Theorem
In mathematics, the Bourbaki–Witt theorem in order theory, named after Nicolas Bourbaki and Ernst Witt, is a basic fixed-point theorem for partially ordered sets. It states that if ''X'' is a non-empty chain complete poset, and f : X \to X such that f (x) \geq x for all x, then ''f'' has a fixed point (mathematics), fixed point. Such a function ''f'' is called ''inflationary'' or ''progressive''. Special case of a finite poset If the poset ''X'' is finite then the statement of the theorem has a clear interpretation that leads to the proof. The sequence of successive iterates, : x_=f(x_n), n=0,1,2,\ldots, where ''x''0 is any element of ''X'', is monotone increasing. By the finiteness of ''X'', it stabilizes: : x_n=x_, for ''n'' sufficiently large. It follows that ''x''∞ is a fixed point of ''f''. Proof of the theorem Pick some y \in X. Define a function ''K'' recursively on the ordinals as follows: :\,K(0) = y :\,K( \alpha+1 ) = f( K( \alpha ) ). If \beta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hausdorff Maximality Principle
In mathematics, the Hausdorff maximal principle is an alternate and earlier formulation of Zorn's lemma proved by Felix Hausdorff in 1914 (Moore 1982:168). It states that in any partially ordered set, every totally ordered subset is contained in a maximal totally ordered subset, where "maximal" is with respect to set inclusion. In a partially ordered set, a totally ordered subset is also called a chain. Thus, the maximal principle says every chain in the set extends to a maximal chain. The Hausdorff maximal principle is one of many statements equivalent to the axiom of choice over ZF (Zermelo–Fraenkel set theory without the axiom of choice). The principle is also called the Hausdorff maximality theorem or the Kuratowski lemma (Kelley 1955:33). Statement The Hausdorff maximal principle states that, in any partially ordered set P, every chain C_0 (i.e., a totally ordered subset) is contained in a maximal chain C (i.e., a chain that is not contained in a strictly larger chain in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fixed-point Theorems
In mathematics, a fixed-point theorem is a result saying that a function ''F'' will have at least one fixed point (a point ''x'' for which ''F''(''x'') = ''x''), under some conditions on ''F'' that can be stated in general terms. In mathematical analysis The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. By contrast, the Brouwer fixed-point theorem (1911) is a non- constructive result: it says that any continuous function from the closed unit ball in ''n''-dimensional Euclidean space to itself must have a fixed point, but it doesn't describe how to find the fixed point (see also Sperner's lemma). For example, the cosine function is continuous in ˆ’1, 1and maps it into ˆ’1, 1 and thus must have a fixed point. This is clear when examining a sketched graph of the cosine function; the fixed point occurs where the cosine curve ''y'' = cos(''x'') intersects t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems in general (although one usually is also interested in the actual difference of two numbers, which is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematische Nachrichten
''Mathematische Nachrichten'' (abbreviated ''Math. Nachr.''; English: ''Mathematical News'') is a mathematical journal published in 12 issues per year by Wiley-VCH GmbH. It should not be confused with the ''Internationale Mathematische Nachrichten'', an unrelated publication of the Austrian Mathematical Society. It was established in 1948 by East German mathematician Erhard Schmidt, who became its first editor-in-chief. At that time it was associated with the German Academy of Sciences at Berlin, and published by Akademie Verlag. After the fall of the Berlin Wall, Akademie Verlag was sold to VCH Verlagsgruppe Weinheim, which in turn was sold to John Wiley & Sons. According to the 2020 edition of Journal Citation Reports, the journal had an impact factor of 1.228, ranking it 111th among 333 journals in the category "Mathematics". As of 2021, Ben Andrews, Robert Denk, Klaus Hulek and Frédéric Klopp are the editors-in-chief of the journal. References External links

* * P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Archiv Der Mathematik
'' Archiv der Mathematik'' is a peer-reviewed mathematics journal published by Springer, established in 1948. Abstracting and indexing The journal is abstracted and indexed in:
Springer. 2022
* * * * According to the ''

picture info

Complete Lattice
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum ( join) and an infimum ( meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For comparison, in a general lattice, only ''pairs'' of elements need to have a supremum and an infimum. Every non-empty finite lattice is complete, but infinite lattices may be incomplete. Complete lattices appear in many applications in mathematics and computer science. Both order theory and universal algebra study them as a special class of lattices. Complete lattices must not be confused with complete partial orders (CPOs), a more general class of partially ordered sets. More specific complete lattices are complete Boolean algebras and complete Heyting algebras (locales). Formal definition A ''complete lattice'' is a partially ordered set (''L'', ≤) such that every subset ''A'' of ''L'' has both a greatest lower bound (the infimum, or '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Knaster–Tarski Theorem
In the mathematical areas of order and lattice theory, the Knaster–Tarski theorem, named after Bronisław Knaster and Alfred Tarski, states the following: :''Let'' (''L'', ≤) ''be a complete lattice and let f : L → L be an order-preserving (monotonic) function w.r.t. ≤. Then the set of fixed points of f in L forms a complete lattice under ≤.'' It was Tarski who stated the result in its most general form, and so the theorem is often known as Tarski's fixed-point theorem. Some time earlier, Knaster and Tarski established the result for the special case where ''L'' is the lattice of subsets of a set, the power set lattice. The theorem has important applications in formal semantics of programming languages and abstract interpretation, as well as in game theory. A kind of converse of this theorem was proved by Anne C. Davis: If every order-preserving function ''f'' : ''L'' → ''L'' on a lattice ''L'' has a fixed point, then ''L'' is a complete lattice. Consequences: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scott-continuous
In mathematics, given two partially ordered sets ''P'' and ''Q'', a function ''f'': ''P'' → ''Q'' between them is Scott-continuous (named after the mathematician Dana Scott) if it preserves all directed suprema. That is, for every directed subset ''D'' of ''P'' with supremum in ''P'', its image has a supremum in ''Q'', and that supremum is the image of the supremum of ''D'', i.e. \sqcup f = f(\sqcup D), where \sqcup is the directed join. When Q is the poset of truth values, i.e. Sierpiński space, then Scott-continuous functions are characteristic functions of open sets, and thus Sierpiński space is the classifying space for open sets. A subset ''O'' of a partially ordered set ''P'' is called Scott-open if it is an upper set and if it is inaccessible by directed joins, i.e. if all directed sets ''D'' with supremum in ''O'' have non-empty intersection with ''O''. The Scott-open subsets of a partially ordered set ''P'' form a topology on ''P'', the Scott topology. A function be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kleene Fixed-point Theorem
In the mathematical areas of order and lattice theory, the Kleene fixed-point theorem, named after American mathematician Stephen Cole Kleene, states the following: :Kleene Fixed-Point Theorem. Suppose (L, \sqsubseteq) is a directed-complete partial order (dcpo) with a least element, and let f: L \to L be a Scott-continuous (and therefore monotone) function. Then f has a least fixed point, which is the supremum of the ascending Kleene chain of f. The ascending Kleene chain of ''f'' is the chain :\bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots \sqsubseteq f^n(\bot) \sqsubseteq \cdots obtained by iterating ''f'' on the least element ⊥ of ''L''. Expressed in a formula, the theorem states that :\textrm(f) = \sup \left(\left\\right) where \textrm denotes the least fixed point. Although Tarski's fixed point theorem does not consider how fixed points can be computed by iterating ''f'' from some seed (also, it pertains to monotone functions on complete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Domain Theory
Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer science, where it is used to specify denotational semantics, especially for functional programming languages. Domain theory formalizes the intuitive ideas of approximation and convergence in a very general way and is closely related to topology. Motivation and intuition The primary motivation for the study of domains, which was initiated by Dana Scott in the late 1960s, was the search for a denotational semantics of the lambda calculus. In this formalism, one considers "functions" specified by certain terms in the language. In a purely syntactic way, one can go from simple functions to functions that take other functions as their input arguments. Using again just the syntactic transformations available in this formalism, one can obtai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Computable Function
Computable functions are the basic objects of study in computability theory. Informally, a function is ''computable'' if there is an algorithm that computes the value of the function for every value of its argument. Because of the lack of a precise definition of the concept of algorithm, every formal definition of computability must refer to a specific model of computation. Many such models of computation have been proposed, the major ones being Turing machines, register machines, lambda calculus and general recursive functions. Although these four are of a very different nature, they provide exactly the same class of computable functions, and, for every model of computation that has ever been proposed, the computable functions for such a model are computable for the above four models of computation. The Church–Turing thesis is the unprovable assertion that every notion of computability that can be imagined can compute only functions that are computable in the above sense. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]