Fixed-point Theorems
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a fixed-point theorem is a result saying that a function ''F'' will have at least one fixed point (a point ''x'' for which ''F''(''x'') = ''x''), under some conditions on ''F'' that can be stated in general terms.


In mathematical analysis

The
Banach fixed-point theorem In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqu ...
(1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. By contrast, the
Brouwer fixed-point theorem Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after Luitzen Egbertus Jan Brouwer, L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a nonempty compactness, compact convex set to itself, the ...
(1911) is a non- constructive result: it says that any
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
from the closed
unit ball Unit may refer to: General measurement * Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law **International System of Units (SI), modern form of the metric system **English units, histo ...
in ''n''-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
to itself must have a fixed point, but it doesn't describe how to find the fixed point (see also Sperner's lemma). For example, the
cosine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that ...
function is continuous in ˆ’1, 1and maps it into ˆ’1, 1 and thus must have a fixed point. This is clear when examining a sketched graph of the cosine function; the fixed point occurs where the cosine curve ''y'' = cos(''x'') intersects the line ''y'' = ''x''. Numerically, the fixed point (known as the Dottie number) is approximately ''x'' = 0.73908513321516 (thus ''x'' = cos(''x'') for this value of ''x''). The
Lefschetz fixed-point theorem In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space X to itself by means of traces of the induced mappings on the homology groups of X. It is name ...
(and the Nielsen fixed-point theorem) from
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
is notable because it gives, in some sense, a way to count fixed points. There are a number of generalisations to
Banach fixed-point theorem In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqu ...
and further; these are applied in PDE theory. See fixed-point theorems in infinite-dimensional spaces. The collage theorem in fractal compression proves that, for many images, there exists a relatively small description of a function that, when iteratively applied to any starting image, rapidly converges on the desired image.


In algebra and discrete mathematics

The Knaster–Tarski theorem states that any order-preserving function on a
complete lattice In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum ( join) and an infimum ( meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For compariso ...
has a fixed point, and indeed a ''smallest'' fixed point. See also Bourbaki–Witt theorem. The theorem has applications in abstract interpretation, a form of
static program analysis In computer science, static program analysis (also known as static analysis or static simulation) is the analysis of computer programs performed without executing them, in contrast with dynamic program analysis, which is performed on programs duri ...
. A common theme in
lambda calculus In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computability, computation based on function Abstraction (computer science), abstraction and function application, application using var ...
is to find fixed points of given lambda expressions. Every lambda expression has a fixed point, and a
fixed-point combinator In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) is a higher-order function (i.e., a function which takes a function as argument) that returns some '' fixed point'' (a value that is mapped to itself) of ...
is a "function" which takes as input a lambda expression and produces as output a fixed point of that expression. An important fixed-point combinator is the
Y combinator Y Combinator, LLC (YC) is an American technology startup accelerator and venture capital firm launched in March 2005 which has been used to launch more than 5,000 companies. The accelerator program started in Boston and Mountain View, Californi ...
used to give recursive definitions. In
denotational semantics In computer science, denotational semantics (initially known as mathematical semantics or Scott–Strachey semantics) is an approach of formalizing the meanings of programming languages by constructing mathematical objects (called ''denotations'' ...
of programming languages, a special case of the Knaster–Tarski theorem is used to establish the semantics of recursive definitions. While the fixed-point theorem is applied to the "same" function (from a logical point of view), the development of the theory is quite different. The same definition of recursive function can be given, in
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since ex ...
, by applying Kleene's recursion theorem. These results are not equivalent theorems; the Knaster–Tarski theorem is a much stronger result than what is used in denotational semantics. However, in light of the Church–Turing thesis their intuitive meaning is the same: a recursive function can be described as the least fixed point of a certain functional, mapping functions to functions. The above technique of iterating a function to find a fixed point can also be used in
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
; the fixed-point lemma for normal functions states that any continuous strictly increasing function from ordinals to ordinals has one (and indeed many) fixed points. Every
closure operator In mathematics, a closure operator on a Set (mathematics), set ''S'' is a Function (mathematics), function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets ...
on a
poset In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
has many fixed points; these are the "closed elements" with respect to the closure operator, and they are the main reason the closure operator was defined in the first place. Every
involution Involution may refer to: Mathematics * Involution (mathematics), a function that is its own inverse * Involution algebra, a *-algebra: a type of algebraic structure * Involute, a construction in the differential geometry of curves * Exponentiati ...
on a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
with an odd number of elements has a fixed point; more generally, for every involution on a finite set of elements, the number of elements and the number of fixed points have the same parity. Don Zagier used these observations to give a one-sentence proof of
Fermat's theorem on sums of two squares In additive number theory, Pierre de Fermat, Fermat's theorem on sums of two squares states that an Even and odd numbers, odd prime number, prime ''p'' can be expressed as: :p = x^2 + y^2, with ''x'' and ''y'' integers, if and only if :p \equiv ...
, by describing two involutions on the same set of triples of integers, one of which can easily be shown to have only one fixed point and the other of which has a fixed point for each representation of a given prime (congruent to 1 mod 4) as a sum of two squares. Since the first involution has an odd number of fixed points, so does the second, and therefore there always exists a representation of the desired form..


List of fixed-point theorems

* Atiyah–Bott fixed-point theorem *
Banach fixed-point theorem In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqu ...
* Bekić's theorem * Borel fixed-point theorem * Bourbaki–Witt theorem * Browder fixed-point theorem *
Brouwer fixed-point theorem Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after Luitzen Egbertus Jan Brouwer, L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a nonempty compactness, compact convex set to itself, the ...
* Rothe's fixed-point theorem * Caristi fixed-point theorem * Diagonal lemma, also known as the fixed-point lemma, for producing self-referential sentences of
first-order logic First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over ...
* Lawvere's fixed-point theorem * Discrete fixed-point theorems * Earle-Hamilton fixed-point theorem *
Fixed-point combinator In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) is a higher-order function (i.e., a function which takes a function as argument) that returns some '' fixed point'' (a value that is mapped to itself) of ...
, which shows that every term in untyped
lambda calculus In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computability, computation based on function Abstraction (computer science), abstraction and function application, application using var ...
has a fixed point * Fixed-point lemma for normal functions * Fixed-point property * Fixed-point theorems in infinite-dimensional spaces *
Injective metric space In metric geometry, an injective metric space, or equivalently a hyperconvex metric space, is a metric space with certain properties generalizing those of the real line and of L∞ distances in higher- dimensional vector spaces. These properties c ...
*
Kakutani fixed-point theorem In mathematical analysis, the Kakutani fixed-point theorem is a fixed-point theorem for set-valued functions. It provides sufficient conditions for a set-valued function defined on a convex, compact subset of a Euclidean space to have a fixed poi ...
* Kleene fixed-point theorem * Knaster–Tarski theorem *
Lefschetz fixed-point theorem In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space X to itself by means of traces of the induced mappings on the homology groups of X. It is name ...
* Nielsen fixed-point theorem * Poincaré–Birkhoff theorem proves the existence of two fixed points * Ryll-Nardzewski fixed-point theorem * Schauder fixed-point theorem * Topological degree theory * Tychonoff fixed-point theorem


See also

* Trace formula


Footnotes


References

* * * * * * * *


External links


Fixed Point Method
{{Authority control Closure operators Iterative methods