HOME

TheInfoList



OR:

Commutative algebra, first known as ideal theory, is the branch of
algebra Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
that studies commutative rings, their
ideals Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considered ...
, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as
noncommutative algebra In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not a ...
; it includes ring theory, representation theory, and the theory of Banach algebras.


Overview

Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the notion of a valuation ring. The restriction of algebraic field extensions to subrings has led to the notions of integral extensions and integrally closed domains as well as the notion of ramification of an extension of valuation rings. The notion of localization of a ring (in particular the localization with respect to a prime ideal, the localization consisting in inverting a single element and the total quotient ring) is one of the main differences between commutative algebra and the theory of non-commutative rings. It leads to an important class of commutative rings, the local rings that have only one maximal ideal. The set of the prime ideals of a commutative ring is naturally equipped with a
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, the Zariski topology. All these notions are widely used in algebraic geometry and are the basic technical tools for the definition of scheme theory, a generalization of algebraic geometry introduced by Grothendieck. Many other notions of commutative algebra are counterparts of geometrical notions occurring in algebraic geometry. This is the case of
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generall ...
, primary decomposition, regular rings, Cohen–Macaulay rings,
Gorenstein ring In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring ''R'' with finite injective dimension as an ''R''-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring ...
s and many other notions.


History

The subject, first known as ideal theory, began with
Richard Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
's work on ideals, itself based on the earlier work of
Ernst Kummer Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician. Skilled in applied mathematics, Kummer trained German army officers in ballistics; afterwards, he taught for 10 years in a '' gymnasium'', the German equivalent of ...
and Leopold Kronecker. Later, David Hilbert introduced the term ''ring'' to generalize the earlier term ''number ring''. Hilbert introduced a more abstract approach to replace the more concrete and computationally oriented methods grounded in such things as complex analysis and classical invariant theory. In turn, Hilbert strongly influenced Emmy Noether, who recast many earlier results in terms of an ascending chain condition, now known as the Noetherian condition. Another important milestone was the work of Hilbert's student Emanuel Lasker, who introduced primary ideals and proved the first version of the Lasker–Noether theorem. The main figure responsible for the birth of commutative algebra as a mature subject was Wolfgang Krull, who introduced the fundamental notions of localization and completion of a ring, as well as that of regular local rings. He established the concept of the
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generall ...
of a ring, first for Noetherian rings before moving on to expand his theory to cover general valuation rings and
Krull ring In commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. They are a higher-dimensional generalization of Dedekind domains, which ...
s. To this day, Krull's principal ideal theorem is widely considered the single most important foundational theorem in commutative algebra. These results paved the way for the introduction of commutative algebra into algebraic geometry, an idea which would revolutionize the latter subject. Much of the modern development of commutative algebra emphasizes modules. Both ideals of a ring ''R'' and ''R''-algebras are special cases of ''R''-modules, so module theory encompasses both ideal theory and the theory of ring extensions. Though it was already incipient in Kronecker's work, the modern approach to commutative algebra using module theory is usually credited to Krull and
Noether Noether is the family name of several mathematicians (particularly, the Noether family), and the name given to some of their mathematical contributions: * Max Noether (1844–1921), father of Emmy and Fritz Noether, and discoverer of: ** Noether ...
.


Main tools and results


Noetherian rings

In mathematics, more specifically in the area of modern algebra known as ring theory, a Noetherian ring, named after Emmy Noether, is a ring in which every non-empty set of ideals has a maximal element. Equivalently, a ring is Noetherian if it satisfies the ascending chain condition on ideals; that is, given any chain: :I_1\subseteq\cdots I_\subseteq I_\subseteq I_\subseteq\cdots there exists an ''n'' such that: :I_=I_=\cdots For a commutative ring to be Noetherian it suffices that every prime ideal of the ring is finitely generated. (The result is due to
I. S. Cohen Irvin Sol Cohen (1917 – February 14, 1955) was an American mathematician at the Massachusetts Institute of Technology who worked on local rings. He was a student of Oscar Zariski at Johns Hopkins University. In his thesis he proved the Cohen ...
.) The notion of a Noetherian ring is of fundamental importance in both commutative and noncommutative ring theory, due to the role it plays in simplifying the ideal structure of a ring. For instance, the ring of
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s and the polynomial ring over a field are both Noetherian rings, and consequently, such theorems as the Lasker–Noether theorem, the Krull intersection theorem, and the Hilbert's basis theorem hold for them. Furthermore, if a ring is Noetherian, then it satisfies the descending chain condition on '' prime ideals''. This property suggests a deep theory of dimension for Noetherian rings beginning with the notion of the
Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generall ...
.


Hilbert's basis theorem

Hilbert's basis theorem has some immediate corollaries: #By induction we see that R _0, \dotsc, X_/math> will also be Noetherian. #Since any affine variety over R^n (i.e. a locus-set of a collection of polynomials) may be written as the locus of an ideal \mathfrak a\subset R _0, \dotsc, X_/math> and further as the locus of its generators, it follows that every affine variety is the locus of finitely many polynomials — i.e. the intersection of finitely many
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Eucl ...
s. #If A is a finitely-generated R-algebra, then we know that A \simeq R _0, \dotsc, X_/ \mathfrak a, where \mathfrak a is an ideal. The basis theorem implies that \mathfrak a must be finitely generated, say \mathfrak a = (p_0, \dotsc, p_), i.e. A is finitely presented.


Primary decomposition

An ideal ''Q'' of a ring is said to be '' primary'' if ''Q'' is proper and whenever ''xy'' ∈ ''Q'', either ''x'' ∈ ''Q'' or ''yn'' ∈ ''Q'' for some positive integer ''n''. In Z, the primary ideals are precisely the ideals of the form (''pe'') where ''p'' is prime and ''e'' is a positive integer. Thus, a primary decomposition of (''n'') corresponds to representing (''n'') as the intersection of finitely many primary ideals. The '' Lasker–Noether theorem'', given here, may be seen as a certain generalization of the fundamental theorem of arithmetic: For any primary decomposition of ''I'', the set of all radicals, that is, the set remains the same by the Lasker–Noether theorem. In fact, it turns out that (for a Noetherian ring) the set is precisely the assassinator of the module ''R''/''I''; that is, the set of all annihilators of ''R''/''I'' (viewed as a module over ''R'') that are prime.


Localization

The localization is a formal way to introduce the "denominators" to a given ring or a module. That is, it introduces a new ring/module out of an existing one so that it consists of fractions :\frac. where the denominators ''s'' range in a given subset ''S'' of ''R''. The archetypal example is the construction of the ring Q of rational numbers from the ring Z of integers.


Completion

A completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have simpler structure than the general ones and Hensel's lemma applies to them.


Zariski topology on prime ideals

The Zariski topology defines a
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
on the spectrum of a ring (the set of prime ideals). In this formulation, the Zariski-closed sets are taken to be the sets :V(I) = \ where ''A'' is a fixed commutative ring and ''I'' is an ideal. This is defined in analogy with the classical Zariski topology, where closed sets in affine space are those defined by polynomial equations . To see the connection with the classical picture, note that for any set ''S'' of polynomials (over an algebraically closed field), it follows from Hilbert's Nullstellensatz that the points of ''V''(''S'') (in the old sense) are exactly the tuples (''a1'', ..., ''an'') such that (''x1'' - ''a1'', ..., ''xn'' - ''an'') contains ''S''; moreover, these are maximal ideals and by the "weak" Nullstellensatz, an ideal of any affine coordinate ring is maximal if and only if it is of this form. Thus, ''V''(''S'') is "the same as" the maximal ideals containing ''S''. Grothendieck's innovation in defining Spec was to replace maximal ideals with all prime ideals; in this formulation it is natural to simply generalize this observation to the definition of a closed set in the spectrum of a ring.


Examples

The fundamental example in commutative algebra is the ring of integers \mathbb. The existence of primes and the unique factorization theorem laid the foundations for concepts such as Noetherian rings and the primary decomposition. Other important examples are: * Polynomial rings R _1,...,x_n/math> *The p-adic integers *Rings of algebraic integers.


Connections with algebraic geometry

Commutative algebra (in the form of polynomial rings and their quotients, used in the definition of
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex number ...
) has always been a part of algebraic geometry. However, in the late 1950s, algebraic varieties were subsumed into Alexander Grothendieck's concept of a scheme. Their local objects are affine schemes or prime spectra, which are locally ringed spaces, which form a category that is antiequivalent (dual) to the category of commutative unital rings, extending the
duality Duality may refer to: Mathematics * Duality (mathematics), a mathematical concept ** Dual (category theory), a formalization of mathematical duality ** Duality (optimization) ** Duality (order theory), a concept regarding binary relations ** Dual ...
between the category of affine algebraic varieties over a field ''k'', and the category of finitely generated reduced ''k''-algebras. The gluing is along the Zariski topology; one can glue within the category of locally ringed spaces, but also, using the Yoneda embedding, within the more abstract category of presheaves of sets over the category of affine schemes. The Zariski topology in the set-theoretic sense is then replaced by a Zariski topology in the sense of Grothendieck topology. Grothendieck introduced Grothendieck topologies having in mind more exotic but geometrically finer and more sensitive examples than the crude Zariski topology, namely the
étale topology In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale t ...
, and the two flat Grothendieck topologies: fppf and fpqc. Nowadays some other examples have become prominent, including the Nisnevich topology. Sheaves can be furthermore generalized to stacks in the sense of Grothendieck, usually with some additional representability conditions, leading to Artin stacks and, even finer, Deligne–Mumford stacks, both often called algebraic stacks.


See also

* List of commutative algebra topics * Glossary of commutative algebra * Combinatorial commutative algebra * Gröbner basis * Homological algebra


Notes


References

* Michael Atiyah &
Ian G. Macdonald Ian Grant Macdonald (born 11 October 1928 in London, England) is a British mathematician known for his contributions to symmetric functions, special functions, Lie algebra theory and other aspects of algebra, algebraic combinatorics, and combi ...
, '' Introduction to Commutative Algebra'', Massachusetts : Addison-Wesley Publishing, 1969. *
Bourbaki, Nicolas Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure - PSL (ENS). Founded in 1934–1935, the Bourbaki group originally intended to prepare a new textbook in ...
, ''Commutative algebra. Chapters 1--7''. Translated from the French. Reprint of the 1989 English translation. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. xxiv+625 pp. *
Bourbaki, Nicolas Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure - PSL (ENS). Founded in 1934–1935, the Bourbaki group originally intended to prepare a new textbook in ...
, ''Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9''. (Elements of mathematics. Commutative algebra. Chapters 8 and 9) Reprint of the 1983 original. Springer, Berlin, 2006. ii+200 pp. * * Rémi Goblot, "Algèbre commutative, cours et exercices corrigés", 2e édition, Dunod 2001, * Ernst Kunz, "Introduction to Commutative algebra and algebraic geometry", Birkhauser 1985, * Matsumura, Hideyuki, ''Commutative algebra''. Second edition. Mathematics Lecture Note Series, 56. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. xv+313 pp. * Matsumura, Hideyuki, ''Commutative Ring Theory''. Second edition. Translated from the Japanese. Cambridge Studies in Advanced Mathematics, Cambridge, UK : Cambridge University Press, 1989. * Nagata, Masayoshi, ''Local rings''. Interscience Tracts in Pure and Applied Mathematics, No. 13. Interscience Publishers a division of John Wiley and Sons, New York-London 1962 xiii+234 pp. * Miles Reid, ''
Undergraduate Commutative Algebra Undergraduate education is education conducted after secondary education and before postgraduate education. It typically includes all postsecondary programs up to the level of a bachelor's degree. For example, in the United States, an entry-lev ...
(London Mathematical Society Student Texts)'', Cambridge, UK : Cambridge University Press, 1996. * Jean-Pierre Serre, ''Local algebra''. Translated from the French by CheeWhye Chin and revised by the author. (Original title: ''Algèbre locale, multiplicités'') Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2000. xiv+128 pp. * Sharp, R. Y., ''Steps in commutative algebra''. Second edition. London Mathematical Society Student Texts, 51. Cambridge University Press, Cambridge, 2000. xii+355 pp. * Zariski, Oscar; Samuel, Pierre, ''Commutative algebra''. Vol. 1, 2. With the cooperation of I. S. Cohen. Corrected reprinting of the 1958, 1960 edition. Graduate Texts in Mathematics, No. 28, 29. Springer-Verlag, New York-Heidelberg-Berlin, 1975. {{Authority control