HOME

TheInfoList



OR:

In mathematics, the term "characteristic function" can refer to any of several distinct concepts: * The
indicator function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x ...
of a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
, that is the function ::\mathbf_A\colon X \to \, :which for a given subset ''A'' of ''X'', has value 1 at points of ''A'' and 0 at points of ''X'' − ''A''. * There is an indicator function for affine varieties over a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subt ...
: given a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. ...
of functions f_\alpha \in \mathbb_q _1,\ldots,x_n/math> let V = \left\ be their vanishing locus. Then, the function P(x) = \prod\left(1 - f_\alpha(x)^\right) acts as an indicator function for V. If x \in V then P(x) = 1, otherwise, for some f_\alpha, we have f_\alpha(x) \neq 0, which implies that f_\alpha(x)^ = 1, hence P(x) = 0. * The characteristic function in convex analysis, closely related to the indicator function of a set: *:\chi_A (x) := \begin 0, & x \in A; \\ + \infty, & x \not \in A. \end * In
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
, the characteristic function of any
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomeno ...
on the
real line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
is given by the following formula, where ''X'' is any
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the p ...
with the distribution in question: *:\varphi_X(t) = \operatorname\left(e^\right), *:where \operatorname denotes
expected value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a ...
. For multivariate distributions, the product ''tX'' is replaced by a scalar product of vectors. * The characteristic function of a cooperative game in game theory. * The
characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The ...
in
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matric ...
. * The characteristic state function in statistical mechanics. * The
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–PoincarĂ© characteristic) is a topological invariant, a number that describes a topological spac ...
, a topological invariant. * The
receiver operating characteristic A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. The method was originally developed for operators of m ...
in statistical
decision theory Decision theory (or the theory of choice; not to be confused with choice theory) is a branch of applied probability theory concerned with the theory of making decisions based on assigning probabilities to various factors and assigning numerical ...
. * The
point characteristic function Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Point ...
in statistics.


References

{{Set index article, mathematics