Cerebral Spinal Fluid
   HOME

TheInfoList



OR:

Cerebrospinal fluid (CSF) is a clear, colorless transcellular body fluid found within the meningeal tissue that surrounds the
vertebrate Vertebrates () are animals with a vertebral column (backbone or spine), and a cranium, or skull. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain. The vertebrates make up the subphylum Vertebra ...
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
and
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue that extends from the medulla oblongata in the lower brainstem to the lumbar region of the vertebral column (backbone) of vertebrate animals. The center of the spinal c ...
, and in the ventricles of the brain. CSF is mostly produced by specialized
ependymal cells The ependyma is the thin neuroepithelial ( simple columnar ciliated epithelium) lining of the ventricular system of the brain and the central canal of the spinal cord. The ependyma is one of the four types of neuroglia in the central nervous sys ...
in the
choroid plexus The choroid plexus, or plica choroidea, is a plexus of cells that arises from the tela choroidea in each of the ventricles of the brain. Regions of the choroid plexus produce and secrete most of the cerebrospinal fluid (CSF) of the central ...
es of the ventricles of the brain, and absorbed in the arachnoid granulations. It is also produced by ependymal cells in the lining of the ventricles. In humans, there is about 125 mL of CSF at any one time, and about 500 mL is generated every day. CSF acts as a shock absorber, cushion or buffer, providing basic mechanical and immunological protection to the brain inside the
skull The skull, or cranium, is typically a bony enclosure around the brain of a vertebrate. In some fish, and amphibians, the skull is of cartilage. The skull is at the head end of the vertebrate. In the human, the skull comprises two prominent ...
. CSF also serves a vital function in the cerebral autoregulation of
cerebral blood flow Cerebral circulation is the movement of blood through a network of cerebral arteries and veins supplying the brain. The rate of cerebral blood flow in an adult human is typically 750 milliliters per minute, or about 15% of cardiac output. ...
. CSF occupies the subarachnoid space (between the
arachnoid mater The arachnoid mater (or simply arachnoid) is one of the three meninges, the protective membranes that cover the brain and spinal cord. It is so named because of its resemblance to a spider web. The arachnoid mater is a derivative of the neural cr ...
and the
pia mater Pia mater ( or ),Entry "pia mater"
in
ventricular system In neuroanatomy, the ventricular system is a set of four interconnected cavities known as cerebral ventricles in the brain. Within each ventricle is a region of choroid plexus which produces the circulating cerebrospinal fluid (CSF). The ventric ...
around and inside the brain and spinal cord. It fills the ventricles of the brain,
cisterns A cistern (; , ; ) is a waterproof receptacle for holding liquids, usually water. Cisterns are often built to catch and store rainwater. To prevent leakage, the interior of the cistern is often lined with hydraulic plaster. Cisterns are disti ...
, and
sulci Sulci or Sulki (in Greek , Stephanus of Byzantium, Steph. B., Ptolemy, Ptol.; , Strabo; , Pausanias (geographer), Paus.), was one of the most considerable cities of ancient Sardinia, situated in the southwest corner of the island, on a small isla ...
, as well as the
central canal The central canal (also known as spinal foramen or ependymal canal) is the cerebrospinal fluid-filled space that runs through the spinal cord. The central canal lies below and is connected to the ventricular system of the brain, from which it r ...
of the spinal cord. There is also a connection from the subarachnoid space to the
bony labyrinth The bony labyrinth (also osseous labyrinth or otic capsule) is the rigid, bony outer wall of the inner ear in the temporal bone. It consists of three parts: the vestibule, semicircular canals, and cochlea. These are cavities hollowed out of the ...
of the
inner ear The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. In mammals, it consists of the bony labyrinth, a hollow cavity in the ...
via the
perilymphatic duct In the anatomy of the human ear, the perilymphatic duct is where the perilymphatic space (vestibule of the ear) is connected to the subarachnoid space. This works as a type of shunt to eliminate excess perilymph fluid from the perilymphatic sp ...
where the
perilymph Perilymph is an extracellular fluid located within the inner ear. It is found within the scala tympani and scala vestibuli of the cochlea. The ionic composition of perilymph is comparable to that of plasma and cerebrospinal fluid. The major ca ...
is continuous with the cerebrospinal fluid. The ependymal cells of the choroid plexus have multiple
motile cilia The cilium (: cilia; ; in Medieval Latin and in anatomy, ''cilium'') is a short hair-like membrane protrusion from many types of eukaryotic cell. (Cilia are absent in bacteria and archaea.) The cilium has the shape of a slender threadlike pr ...
on their apical surfaces that beat to move the CSF through the ventricles. A sample of CSF can be taken from around the spinal cord via lumbar puncture. This can be used to test the
intracranial pressure Intracranial pressure (ICP) is the pressure exerted by fluids such as cerebrospinal fluid (CSF) inside the skull and on the brain tissue. ICP is measured in millimeters of mercury ( mmHg) and at rest, is normally 7–15 mmHg for a supine adu ...
, as well as indicate diseases including infections of the brain or the surrounding
meninges In anatomy, the meninges (; meninx ; ) are the three membranes that envelop the brain and spinal cord. In mammals, the meninges are the dura mater, the arachnoid mater, and the pia mater. Cerebrospinal fluid is located in the subarachnoid spac ...
. Although noted by
Hippocrates Hippocrates of Kos (; ; ), also known as Hippocrates II, was a Greek physician and philosopher of the Classical Greece, classical period who is considered one of the most outstanding figures in the history of medicine. He is traditionally referr ...
, it was forgotten for centuries, though later was described in the 18th century by
Emanuel Swedenborg Emanuel Swedenborg (; ; born Emanuel Swedberg; (29 January 168829 March 1772) was a Swedish polymath; scientist, engineer, astronomer, anatomist, Christian theologian, philosopher, and mysticism, mystic. He became best known for his book on the ...
. In 1914,
Harvey Cushing Harvey Williams Cushing (April 8, 1869 – October 7, 1939) was an American neurosurgery, neurosurgeon, pathologist, writer, and draftsman. A pioneer of brain surgery, he was the first exclusive neurosurgeon and the first person to describe Cush ...
demonstrated that CSF is secreted by the choroid plexus.


Structure


Circulation

In humans, there is about 125–150 mL of CSF at any one time. This CSF circulates within the
ventricular system In neuroanatomy, the ventricular system is a set of four interconnected cavities known as cerebral ventricles in the brain. Within each ventricle is a region of choroid plexus which produces the circulating cerebrospinal fluid (CSF). The ventric ...
of the brain. The ventricles are a series of cavities filled with CSF. The majority of CSF is produced from within the two
lateral ventricles The lateral ventricles are the two largest ventricles of the brain and contain cerebrospinal fluid. Each cerebral hemisphere contains a lateral ventricle, known as the left or right lateral ventricle, respectively. Each lateral ventricle resemb ...
. From here, CSF passes through the interventricular foramina to the
third ventricle The third ventricle is one of the four connected cerebral ventricles of the ventricular system within the mammalian brain. It is a slit-like cavity formed in the diencephalon between the two thalami, in the midline between the right and lef ...
, then the
cerebral aqueduct The cerebral aqueduct (aqueduct of the midbrain, aqueduct of Sylvius, Sylvian aqueduct, mesencephalic duct) is a small, narrow tube connecting the third and fourth ventricles of the brain. The cerebral aqueduct is a midline structure that passe ...
to the
fourth ventricle The fourth ventricle is one of the four connected fluid-filled cavities within the human brain. These cavities, known collectively as the ventricular system, consist of the left and right lateral ventricles, the third ventricle, and the fourth ...
. From the fourth ventricle, the fluid passes into the subarachnoid space through four openingsthe
central canal The central canal (also known as spinal foramen or ependymal canal) is the cerebrospinal fluid-filled space that runs through the spinal cord. The central canal lies below and is connected to the ventricular system of the brain, from which it r ...
of the spinal cord, the
median aperture The median aperture (median aperture of fourth ventricle or foramen of Magendie) is an opening at the caudal portion of the roof of the fourth ventricle. It allows the flow of cerebrospinal fluid (CSF) from the fourth ventricle into the cisterna ...
, and the two
lateral aperture The lateral aperture, lateral aperture of fourth ventricle or foramen of Luschka (after anatomist Hubert von Luschka)Hube ...
s. CSF is present within the subarachnoid space, which covers the brain and spinal cord, and stretches below the end of the spinal cord to the
sacrum The sacrum (: sacra or sacrums), in human anatomy, is a triangular bone at the base of the spine that forms by the fusing of the sacral vertebrae (S1S5) between ages 18 and 30. The sacrum situates at the upper, back part of the pelvic cavity, ...
. There is a connection from the subarachnoid space to the
bony labyrinth The bony labyrinth (also osseous labyrinth or otic capsule) is the rigid, bony outer wall of the inner ear in the temporal bone. It consists of three parts: the vestibule, semicircular canals, and cochlea. These are cavities hollowed out of the ...
of the
inner ear The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. In mammals, it consists of the bony labyrinth, a hollow cavity in the ...
making the cerebrospinal fluid continuous with the
perilymph Perilymph is an extracellular fluid located within the inner ear. It is found within the scala tympani and scala vestibuli of the cochlea. The ionic composition of perilymph is comparable to that of plasma and cerebrospinal fluid. The major ca ...
in 93% of people. CSF moves in a single outward direction from the ventricles, but multidirectionally in the subarachnoid space. The flow of cerebrospinal fluid is pulsatile, driven by the
cardiac cycle The cardiac cycle is the performance of the heart, human heart from the beginning of one heartbeat to the beginning of the next. It consists of two periods: one during which the heart muscle relaxes and refills with blood, called diastole, fo ...
. The flow of CSF through perivascular spaces in the brain (surrounding the cerebral arteries) is obtained through the pumping movements of the walls of the arteries.


Contents

CSF is derived from
blood plasma Blood plasma is a light Amber (color), amber-colored liquid component of blood in which blood cells are absent, but which contains Blood protein, proteins and other constituents of whole blood in Suspension (chemistry), suspension. It makes up ...
and is largely similar to it, except that CSF is nearly protein-free compared with plasma and has some different
electrolyte An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
levels. Due to the way it is produced, CSF has a lower
chloride The term chloride refers to a compound or molecule that contains either a chlorine anion (), which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond (). The pr ...
level than plasma, and a higher
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
level. CSF contains approximately 0.59% plasma proteins, or approximately 15 to 40 mg/dL, depending on sampling site. In general, globular proteins and albumin are in lower concentration in ventricular CSF compared to lumbar or cisternal fluid. This continuous flow into the
venous system Veins () are blood vessels in the circulatory system of humans and most other animals that carry blood towards the heart. Most veins carry deoxygenated blood from the tissues back to the heart; exceptions are those of the pulmonary and fetal c ...
dilutes the concentration of larger, lipid-insoluble molecules penetrating the brain and CSF. CSF is normally free of
red blood cell Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
s and at most contains fewer than 5
white blood cell White blood cells (scientific name leukocytes), also called immune cells or immunocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and foreign entities. White blood cells are genera ...
s per mm3 (if the white cell count is higher than this it constitutes pleocytosis and can indicate inflammation or infection).


Development

At around the fifth week of its
development Development or developing may refer to: Arts *Development (music), the process by which thematic material is reshaped * Photographic development *Filmmaking, development phase, including finance and budgeting * Development hell, when a proje ...
, the
embryo An embryo ( ) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sp ...
is a three-layered disc, covered with
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from the o ...
,
mesoderm The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.Langman's Medical ...
and
endoderm Endoderm is the innermost of the three primary germ layers in the very early embryo. The other two layers are the ectoderm (outside layer) and mesoderm (middle layer). Cells migrating inward along the archenteron form the inner layer of the gastr ...
. A tube-like formation develops in the midline, called the
notochord The notochord is an elastic, rod-like structure found in chordates. In vertebrates the notochord is an embryonic structure that disintegrates, as the vertebrae develop, to become the nucleus pulposus in the intervertebral discs of the verteb ...
. The notochord releases extracellular molecules that affect the transformation of the overlying ectoderm into nervous tissue. The
neural tube In the developing chordate (including vertebrates), the neural tube is the embryonic precursor to the central nervous system, which is made up of the brain and spinal cord. The neural groove gradually deepens as the neural folds become elevated, ...
, forming from the ectoderm, contains CSF prior to the development of the choroid plexuses. The open neuropores of the neural tube close after the first month of development, and CSF pressure gradually increases. By the fourth week of embryonic development the brain has begun to develop. Three swellings (
primary brain vesicles Brain vesicles are the bulge-like enlargements of the early development of the neural tube in vertebrates, which eventually give rise to the brain. Vesicle formation begins shortly after the rostral closure of the neural tube, at about embryonic ...
), have formed within the embryo around the canal, near to where the head will develop. These swellings represent different components of the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
: the
prosencephalon In the anatomy of the brain of vertebrates, the forebrain or prosencephalon is the rostral (forward-most) portion of the brain. The forebrain controls body temperature, reproductive functions, eating, sleeping, and the display of emotions. Ve ...
(forebrain),
mesencephalon The midbrain or mesencephalon is the uppermost portion of the brainstem connecting the diencephalon and cerebrum with the pons. It consists of the cerebral peduncles, tegmentum, and tectum. It is functionally associated with vision, hearing, mo ...
(midbrain), and
rhombencephalon The hindbrain, rhombencephalon (shaped like a rhombus) is a developmental categorization of portions of the central nervous system in vertebrates. It includes the medulla, pons, and cerebellum. Together they support vital bodily processes. Met ...
(hindbrain). Subarachnoid spaces are first evident around the 32nd day of development near the rhombencephalon; circulation is visible from the 41st day. At this time, the first choroid plexus can be seen, found in the fourth ventricle, although the time at which they first secrete CSF is not yet known. The developing forebrain surrounds the neural cord. As the forebrain develops, the neural cord within it becomes a ventricle, ultimately forming the lateral ventricles. Along the inner surface of both ventricles, the ventricular wall remains thin, and a
choroid plexus The choroid plexus, or plica choroidea, is a plexus of cells that arises from the tela choroidea in each of the ventricles of the brain. Regions of the choroid plexus produce and secrete most of the cerebrospinal fluid (CSF) of the central ...
develops, producing and releasing CSF. CSF quickly fills the neural canal. Arachnoid villi are formed around the 35th week of development, with arachnoid granulations noted around the 39th, and continuing developing until 18 months of age. The subcommissural organ secretes SCO-spondin, which forms Reissner's fiber within CSF assisting movement through the cerebral aqueduct. It is present in early intrauterine life but disappears during early development.


Physiology


Function

CSF serves several purposes: #Buoyancy: The actual
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
of the
human brain The human brain is the central organ (anatomy), organ of the nervous system, and with the spinal cord, comprises the central nervous system. It consists of the cerebrum, the brainstem and the cerebellum. The brain controls most of the activi ...
is about 1400–1500 grams, but its net
weight In science and engineering, the weight of an object is a quantity associated with the gravitational force exerted on the object by other objects in its environment, although there is some variation and debate as to the exact definition. Some sta ...
suspended in CSF is equivalent to a mass of 25–50 g. The brain therefore exists in
neutral buoyancy Neutral buoyancy occurs when an object's average density is equal to the density of the fluid in which it is immersed, resulting in the buoyant force balancing the force of gravity that would otherwise cause the object to sink (if the body's de ...
, which allows the brain to maintain its
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
without being impaired by its own weight, which would cut off blood supply and kill
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s in the lower sections without CSF. #Protection: CSF protects the brain tissue from injury when jolted or hit, by providing a fluid buffer that acts as a
shock absorber A shock absorber or damper is a mechanical or hydraulics, hydraulic device designed to absorb and Damping ratio, damp shock (mechanics), shock impulses. It does this by converting the kinetic energy of the shock into another form of energy (typic ...
from some forms of mechanical injury. #Prevention of brain ischemia: The prevention of
brain ischemia Brain ischemia is a condition in which there is insufficient bloodflow to the brain to meet metabolic demand. This leads to cerebral hypoxia, poor oxygen supply in the brain and may be temporary such as in transient ischemic attack or permanent i ...
is aided by decreasing the amount of CSF in the limited space inside the skull. This decreases total
intracranial pressure Intracranial pressure (ICP) is the pressure exerted by fluids such as cerebrospinal fluid (CSF) inside the skull and on the brain tissue. ICP is measured in millimeters of mercury ( mmHg) and at rest, is normally 7–15 mmHg for a supine adu ...
and facilitates blood
perfusion Perfusion is the passage of fluid through the circulatory system or lymphatic system to an organ (anatomy), organ or a tissue (biology), tissue, usually referring to the delivery of blood to a capillary bed in tissue. Perfusion may also refer t ...
. #Regulation: CSF allows for the homeostatic regulation of the distribution of substances between cells of the brain, and
neuroendocrine Neuroendocrine cells are cells that receive neuronal input (through neurotransmitters released by nerve cells or neurosecretory cells) and, as a consequence of this input, release messenger molecules ( hormones) into the blood. In this way they b ...
factors, to which slight changes can cause problems or damage to the nervous system. For example, high
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG (G ...
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
disrupts
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
and
blood pressure Blood pressure (BP) is the pressure of Circulatory system, circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term ...
control, and high CSF pH causes
dizziness Dizziness is an imprecise term that can refer to a sense of disorientation in space, vertigo, or lightheadedness. It can also refer to Balance disorder, disequilibrium or a non-specific feeling, such as giddiness or foolishness. Dizziness is a ...
and
fainting Syncope , commonly known as fainting or passing out, is a loss of consciousness and muscle strength characterized by a fast onset, short duration, and spontaneous recovery. It is caused by a decrease in blood flow to the brain, typically from ...
. #Clearing waste: CSF allows for the removal of waste products from the brain, and is critical in the brain's
lymphatic system The lymphatic system, or lymphoid system, is an organ system in vertebrates that is part of the immune system and complementary to the circulatory system. It consists of a large network of lymphatic vessels, lymph nodes, lymphoid organs, lympha ...
, called the
glymphatic system The glymphatic system, glymphatic clearance pathway or paravascular system is an organ system for metabolic waste removal in the central nervous system (CNS) of vertebrates. According to this model, cerebrospinal fluid (CSF), an ultrafiltrated ...
. Metabolic waste products
diffuse Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
rapidly into CSF and are removed into the bloodstream as CSF is absorbed. When this goes awry, CSF can become toxic, such as in
amyotrophic lateral sclerosis Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or—in the United States—Lou Gehrig's disease (LGD), is a rare, Terminal illness, terminal neurodegenerative disease, neurodegenerative disorder that results i ...
, the most common form of
motor neuron disease Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or—in the United States—Lou Gehrig's disease (LGD), is a rare, terminal neurodegenerative disorder that results in the progressive loss of both upper and low ...
.


Production

The brain produces roughly 500 mL of cerebrospinal fluid per day at a rate of about 20 mL an hour. This
transcellular fluid In cell biology, extracellular fluid (ECF) denotes all body fluid outside the cells of any multicellular organism. Total body water in healthy adults is about 50–60% (range 45 to 75%) of total body weight; women and the obese typically ha ...
is constantly reabsorbed, so that only 125–150 mL is present at any one time. CSF volume is higher on a mL per kg body weight basis in children compared to adults. Infants have a CSF volume of 4 mL/kg, children have a CSF volume of 3 mL/kg, and adults have a CSF volume of 1.5–2 mL/kg. A high CSF volume is why a larger dose of local anesthetic, on a mL/kg basis, is needed in infants. Additionally, the larger CSF volume may be one reason as to why children have lower rates of postdural puncture headache. Most (about two-thirds to 80%) of CSF is produced by the
choroid plexus The choroid plexus, or plica choroidea, is a plexus of cells that arises from the tela choroidea in each of the ventricles of the brain. Regions of the choroid plexus produce and secrete most of the cerebrospinal fluid (CSF) of the central ...
. The choroid plexus is a network of blood vessels present within sections of the four ventricles of the brain. It is present throughout the
ventricular system In neuroanatomy, the ventricular system is a set of four interconnected cavities known as cerebral ventricles in the brain. Within each ventricle is a region of choroid plexus which produces the circulating cerebrospinal fluid (CSF). The ventric ...
except for the
cerebral aqueduct The cerebral aqueduct (aqueduct of the midbrain, aqueduct of Sylvius, Sylvian aqueduct, mesencephalic duct) is a small, narrow tube connecting the third and fourth ventricles of the brain. The cerebral aqueduct is a midline structure that passe ...
, and the frontal and occipital horns of the lateral ventricles. CSF is mostly produced by the
lateral ventricles The lateral ventricles are the two largest ventricles of the brain and contain cerebrospinal fluid. Each cerebral hemisphere contains a lateral ventricle, known as the left or right lateral ventricle, respectively. Each lateral ventricle resemb ...
. CSF is also produced by the single layer of column-shaped
ependymal cell The ependyma is the thin neuroepithelial ( simple columnar ciliated epithelium) lining of the ventricular system of the brain and the central canal of the spinal cord. The ependyma is one of the four types of neuroglia in the central nervous sys ...
s which line the ventricles; by the lining surrounding the subarachnoid space; and a small amount directly from the tiny spaces surrounding blood vessels around the brain. CSF is produced by the choroid plexus in two steps. Firstly, a filtered form of plasma moves from fenestrated capillaries in the choroid plexus into an interstitial space, with movement guided by a difference in pressure between the blood in the capillaries and the interstitial fluid. This fluid then needs to pass through the
epithelium Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
cells lining the choroid plexus into the ventricles, an active process requiring the transport of
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
,
potassium Potassium is a chemical element; it has Symbol (chemistry), symbol K (from Neo-Latin ) and atomic number19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to ...
and
chloride The term chloride refers to a compound or molecule that contains either a chlorine anion (), which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond (). The pr ...
that draws water into CSF by creating
osmotic pressure Osmotic pressure is the minimum pressure which needs to be applied to a Solution (chemistry), solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a soluti ...
. Unlike blood passing from the capillaries into the choroid plexus, the epithelial cells lining the choroid plexus contain
tight junctions Tight junctions, also known as occluding junctions or ''zonulae occludentes'' (singular, ''zonula occludens''), are multiprotein junctional complexes between epithelial cells, sealing and preventing leakage of solutes and water. They also play a ...
between cells, which act to prevent most substances flowing freely into CSF.
Cilia The cilium (: cilia; ; in Medieval Latin and in anatomy, ''cilium'') is a short hair-like membrane protrusion from many types of eukaryotic cell. (Cilia are absent in bacteria and archaea.) The cilium has the shape of a slender threadlike proj ...
on the apical surfaces of the ependymal cells beat to help transport the CSF.
Water Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
and
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
from the interstitial fluid diffuse into the epithelial cells. Within these cells,
carbonic anhydrase The carbonic anhydrases (or carbonate dehydratases) () form a family of enzymes that catalyst, catalyze the interconversion between carbon dioxide and water and the Dissociation (chemistry), dissociated ions of carbonic acid (i.e. bicarbonate a ...
converts the substances into
bicarbonate In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula . Bicarbonate serves a crucial bioche ...
and hydrogen ions. These are exchanged for sodium and chloride on the cell surface facing the interstitium. Sodium, chloride, bicarbonate and potassium are then actively secreted into the ventricular lumen. This creates osmotic pressure and draws water into CSF, facilitated by
aquaporin Aquaporins, also called water channels, are channel proteins from a larger family of major intrinsic proteins that form pores in the membrane of biological cells, mainly facilitating transport of water between cells. The cell membranes of ...
s. CSF contains many fewer protein anions than blood plasma. Protein in the blood is primarily composed of anions where each anion has many negative charges on it. As a result, to maintain electroneutrality blood plasma has a much lower concentration of chloride anions than sodium cations. CSF contains a similar concentration of sodium ions to blood plasma but fewer protein cations and therefore a smaller imbalance between sodium and chloride resulting in a higher concentration of chloride ions than plasma. This creates an osmotic pressure difference with the plasma. CSF has less potassium, calcium, glucose and protein. Choroid plexuses also secrete growth factors,
iodine Iodine is a chemical element; it has symbol I and atomic number 53. The heaviest of the stable halogens, it exists at standard conditions as a semi-lustrous, non-metallic solid that melts to form a deep violet liquid at , and boils to a vi ...
, vitamin B1, vitamins B1, Vitamin B12, B12, Vitamin C, C, folate, beta-2 microglobulin, arginine vasopressin and nitric oxide into CSF. A Na-K-Cl cotransporter and Na/K ATPase found on the surface of the choroid endothelium, appears to play a role in regulating CSF secretion and composition. It has been hypothesised that CSF is not primarily produced by the choroid plexus, but is being permanently produced inside the entire CSF system, as a consequence of water filtration through the capillary walls into the interstitial fluid of the surrounding brain tissue, regulated by Aquaporin 4, AQP-4. There are circadian variations in CSF secretion, with the mechanisms not fully understood, but potentially relating to differences in the activation of the autonomic nervous system over the course of the day. Choroid plexus of the lateral ventricle produces CSF from the arterial blood provided by the anterior choroidal artery. In the fourth ventricle, CSF is produced from the arterial blood from the anterior inferior cerebellar artery (cerebellopontine angle and the adjacent part of the lateral recess), the posterior inferior cerebellar artery (roof and median opening), and the superior cerebellar artery.


Reabsorption

CSF returns to the vascular system by entering the dural venous sinuses via arachnoid granulations. These are outpouchings of the
arachnoid mater The arachnoid mater (or simply arachnoid) is one of the three meninges, the protective membranes that cover the brain and spinal cord. It is so named because of its resemblance to a spider web. The arachnoid mater is a derivative of the neural cr ...
into the venous sinuses around the brain, with valves to ensure one-way drainage. This occurs because of a pressure difference between the arachnoid mater and venous sinuses. CSF has also been seen to drain into lymphatic vessels, particularly those surrounding the nose via drainage along the olfactory nerve through the cribriform plate. The pathway and extent are currently not known, but may involve CSF flow along some cranial nerves and be more prominent in the neonate. CSF turns over at a rate of three to four times a day. CSF has also been seen to be reabsorbed through the sheathes of cranial nerves, cranial and spinal nerve sheathes, and through the ependyma.


Regulation

The composition and rate of CSF generation are influenced by hormones and the content and pressure of blood and CSF. For example, when CSF pressure is higher, there is less of a pressure difference between the capillary blood in choroid plexuses and CSF, decreasing the rate at which fluids move into the choroid plexus and CSF generation. The autonomic nervous system influences choroid plexus CSF secretion, with activation of the sympathetic nervous system decreasing secretion and the parasympathetic nervous system increasing it. Changes in the pH#pH of various body fluids, pH of the blood can affect the activity of
carbonic anhydrase The carbonic anhydrases (or carbonate dehydratases) () form a family of enzymes that catalyst, catalyze the interconversion between carbon dioxide and water and the Dissociation (chemistry), dissociated ions of carbonic acid (i.e. bicarbonate a ...
, and some drugs (such as furosemide, acting on the Na-K-Cl cotransporter) have the potential to impact membrane channels.


Clinical significance


Pressure

CSF pressure, as measured by lumbar puncture, is 10–18 Centimetre of water, cmH2O (8–15 mmHg or 1.1–2 kilopascal, kPa) with the patient lying on the side and 20–30 cmH2O (16–24 mmHg or 2.1–3.2 kPa) with the patient sitting up. In newborns, CSF pressure ranges from 8 to 10 centimetre of water, cmH2O (4.4–7.3 mmHg or 0.78–0.98 kPa). Most variations are due to coughing or internal compression of jugular veins in the neck. When lying down, the CSF pressure as estimated by lumbar puncture is similar to the
intracranial pressure Intracranial pressure (ICP) is the pressure exerted by fluids such as cerebrospinal fluid (CSF) inside the skull and on the brain tissue. ICP is measured in millimeters of mercury ( mmHg) and at rest, is normally 7–15 mmHg for a supine adu ...
. Hydrocephalus is an abnormal accumulation of CSF in the ventricles of the brain. Hydrocephalus can occur because of obstructive hydrocephalus, obstruction of the passage of CSF, such as from an infection, injury, mass, or congenital abnormality. normal pressure hydrocephalus, Hydrocephalus without obstruction associated with normal CSF pressure may also occur. Symptoms can include gait dysfunction, problems with gait and Motor coordination, coordination, urinary incontinence, nausea and vomiting, and progressively impaired cognition. In infants, hydrocephalus can cause an enlarged head, as the bones of the skull have not yet fused, seizures, irritability and drowsiness. A CT scan or MRI scan may reveal enlargement of one or both lateral ventricles, or causative masses or lesions, and lumbar puncture may be used to demonstrate and in some circumstances relieve high intracranial pressure. Hydrocephalus is usually treated through the insertion of a Cerebral shunt, shunt, such as a ventriculo-peritoneal shunt, which diverts fluid to another part of the body. Idiopathic intracranial hypertension is a condition of unknown cause characterized by a rise in CSF pressure. It is associated with headaches, double vision, difficulties seeing, and a Papilledema, swollen optic disc. It can occur in association with the use of vitamin A and tetracycline antibiotics, or without any identifiable cause at all, particularly in younger obese women. Management may include ceasing any known causes, a carbonic anhydrase inhibitor such as acetazolamide, repeated drainage via lumbar puncture, or the insertion of a shunt such as a ventriculo-peritoneal shunt.


CSF leak

CSF can leak from the dura mater, dura as a result of different causes such as physical trauma or a lumbar puncture, or from idiopathy, no known cause when it is termed a spontaneous cerebrospinal fluid leak. It is usually associated with intracranial hypotension: low CSF pressure. It can cause headaches, made worse by standing, moving and coughing, as the low CSF pressure causes the brain to "sag" downwards and put pressure on its lower structures. If a leak is identified, a beta-2 transferrin test of the leaking fluid, when positive, is highly specific and sensitive for the detection for CSF leakage. Medical imaging such as CT scans and MRI scans can be used to investigate for a presumed CSF leak when no obvious leak is found but low CSF pressure is identified. Caffeine, given either orally or intravenously, often offers symptomatic relief. Treatment of an identified leak may include injection of a person's blood into the epidural space (an epidural blood patch), spinal surgery, or fibrin glue.


Lumbar puncture

CSF can be tested for the diagnosis of a variety of neurological diseases, usually obtained by a procedure called lumbar puncture. Lumbar puncture is carried out under sterile conditions by inserting a needle into the subarachnoid space, usually between the third and fourth lumbar vertebrae. CSF is extracted through the needle, and tested. About one third of people experience a headache after lumbar puncture, and pain or discomfort at the needle entry site is common. Rarer complications may include bruising, meningitis or ongoing post lumbar-puncture leakage of CSF. Testing often includes observing the colour of the fluid, measuring CSF pressure, and counting and identifying white blood cell, white and
red blood cell Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
s within the fluid; measuring protein and glucose levels; and Microbiological culture, culturing the fluid. The presence of red blood cells and xanthochromia may indicate subarachnoid hemorrhage; whereas
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
infections such as meningitis, may be indicated by elevated white blood cell levels. A CSF culture may yield the microorganism that has caused the infection, or Polymerase chain reaction, PCR may be used to identify a viral cause. Investigations to the total type and nature of proteins reveal point to specific diseases, including multiple sclerosis, paraneoplastic syndromes, systemic lupus erythematosus, neurosarcoidosis, cerebral angiitis; and specific antibodies such as aquaporin-4 may be tested for to assist in the diagnosis of autoimmune conditions. A lumbar puncture that drains CSF may also be used as part of treatment for some conditions, including idiopathic intracranial hypertension and normal pressure hydrocephalus. Lumbar puncture can also be performed to measure the
intracranial pressure Intracranial pressure (ICP) is the pressure exerted by fluids such as cerebrospinal fluid (CSF) inside the skull and on the brain tissue. ICP is measured in millimeters of mercury ( mmHg) and at rest, is normally 7–15 mmHg for a supine adu ...
, which might be increased in certain types of hydrocephalus. However, a lumbar puncture should never be performed if increased intracranial pressure is suspected due to certain situations such as a tumour, because it can lead to fatal brain herniation.


Anesthesia and chemotherapy

Some anesthetics and chemotherapy drugs are injected intrathecally into the subarachnoid space, where they spread around CSF, meaning substances that cannot cross the blood–brain barrier can still be active throughout the central nervous system. Baricity refers to the density of a substance compared to the density of human cerebrospinal fluid and is used in regional anesthesia to determine the manner in which a particular drug will spread in the intrathecal space.


Liquorpheresis

Liquorpheresis is the process of filtering the CSF in order to clear it from endogen or exogen pathogens. It can be achieved by means of fully implantable or extracorporeal devices, though the technique remains experimental today.


CSF drug delivery

CSF drug delivery refers to a number of methods designed to administer therapeutic agents directly into the CSF, bypassing the BBB to achieve higher drug concentrations in the CNS. This technique is particularly beneficial for treating neurological disorders such as brain tumors, infections, and neurodegenerative diseases. Intrathecal injection, where drugs are injected directly into the CSF via the lumbar region, and intracerebroventricular injection, targeting the brain's ventricles, are common approaches. These methods ensure that drugs can reach the CNS more effectively than systemic administration, potentially improving therapeutic outcomes and reducing systemic side effects. Advances in this field are driven by ongoing research into novel delivery systems and drug formulations, enhancing the precision and efficacy of treatments. Intrathecal pseudodelivery refers to a particular drug delivery method where the therapeutic agent is introduced into a reservoir connected to the intrathecal space, rather than being released into the CSF and distributed throughout the CNS. In this approach, the drug interacts with its target within the reservoir, allowing for changing the composition of the CSF without systemic release. This method can be advantageous for maximizing efficacy and minimizing systemic side effects.


History

Various comments by ancient physicians have been read as referring to CSF.
Hippocrates Hippocrates of Kos (; ; ), also known as Hippocrates II, was a Greek physician and philosopher of the Classical Greece, classical period who is considered one of the most outstanding figures in the history of medicine. He is traditionally referr ...
discussed "water" surrounding the brain when describing congenital hydrocephalus, and Galen referred to "excremental liquid" in the ventricles of the brain, which he believed was purged into the nose. But for some 16 intervening centuries of ongoing anatomical study, CSF remained unmentioned in the literature. This is perhaps because of the prevailing autopsy technique, which involved cutting off the head, thereby removing evidence of CSF before the brain was examined. The modern rediscovery of CSF is credited to
Emanuel Swedenborg Emanuel Swedenborg (; ; born Emanuel Swedberg; (29 January 168829 March 1772) was a Swedish polymath; scientist, engineer, astronomer, anatomist, Christian theologian, philosopher, and mysticism, mystic. He became best known for his book on the ...
. In a manuscript written between 1741 and 1744, unpublished in his lifetime, Swedenborg referred to CSF as "spirituous lymph" secreted from the roof of the fourth ventricle down to the medulla oblongata and spinal cord. This manuscript was eventually published in translation in 1887. Albrecht von Haller, a Swiss physician and physiologist, made note in his 1747 book on physiology that the "water" in the brain was secreted into the ventricles and absorbed in the veins, and when secreted in excess, could lead to hydrocephalus. François Magendie studied the properties of CSF by vivisection. He discovered the foramen Magendie, the opening in the roof of the fourth ventricle, but mistakenly believed that CSF was secreted by the
pia mater Pia mater ( or ),Entry "pia mater"
in
In 1891, W. Essex Wynter began treating tubercular meningitis by removing CSF from the subarachnoid space, and Heinrich Quincke began to popularize lumbar puncture, which he advocated for both diagnostic and therapeutic purposes. In 1912, a neurologist William Mestrezat gave the first accurate description of the chemical composition of CSF. In 1914, Harvey W. Cushing published conclusive evidence that CSF is secreted by the
choroid plexus The choroid plexus, or plica choroidea, is a plexus of cells that arises from the tela choroidea in each of the ventricles of the brain. Regions of the choroid plexus produce and secrete most of the cerebrospinal fluid (CSF) of the central ...
.


Other animals

During phylogenesis, CSF is present within the neuraxis before it circulates. The CSF of teleost fish, which do not have a subarachnoid space, is contained within the ventricles of their brains. In mammals, where a subarachnoid space is present, CSF is present in it. Absorption of CSF is seen in amniotes and more complex species, and as species become progressively more complex, the system of absorption becomes progressively more enhanced, and the role of spinal epidural veins in absorption plays a progressively smaller and smaller role. The amount of cerebrospinal fluid varies by size and species. In humans and other mammals, cerebrospinal fluid turns over at a rate of 3–5 times a day. Problems with CSF circulation, leading to hydrocephalus, can occur in other animals as well as humans.


See also

* Neuroglobin * Pandy's test * Reissner's fiber * Syrinx (medicine)


References


External links


Circulation of Cerebrospinal Fluid (CSF)
interactive tool

course material in neuropathology
Identification of the Cerebrospinal Fluid System Dynamics
{{DEFAULTSORT:Cerebrospinal Fluid Body fluids Ventricular system Neurology Reference intervals