Central Projection
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a projection is an
idempotent Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
mapping of a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
(or other
mathematical structure In mathematics, a structure on a set (or on some sets) refers to providing or endowing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the ...
) into a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
(or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a ''projection'', even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane (sheet of paper): the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency). The shadow of a three-dimensional sphere is a disk. Originally, the notion of projection was introduced in
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
to denote the projection of the three-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
onto a plane in it, like the shadow example. The two main projections of this kind are: * The projection from a point onto a plane or central projection: If is a point, called the center of projection, then the projection of a point different from onto a plane that does not contain is the intersection of the line with the plane. The points such that the line is parallel to the plane does not have any image by the projection, but one often says that they project to a point at infinity of the plane (see
Projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
for a formalization of this terminology). The projection of the point itself is not defined. * The projection parallel to a direction , onto a plane or parallel projection: The image of a point is the intersection of the plane with the line parallel to passing through . See for an accurate definition, generalized to any dimension. The concept of projection in mathematics is a very old one, and most likely has its roots in the phenomenon of the shadows cast by real-world objects on the ground. This rudimentary idea was refined and abstracted, first in a geometric context and later in other branches of mathematics. Over time different versions of the concept developed, but today, in a sufficiently abstract setting, we can unify these variations. In
cartography Cartography (; from , 'papyrus, sheet of paper, map'; and , 'write') is the study and practice of making and using maps. Combining science, aesthetics and technique, cartography builds on the premise that reality (or an imagined reality) can ...
, a
map projection In cartography, a map projection is any of a broad set of Transformation (function) , transformations employed to represent the curved two-dimensional Surface (mathematics), surface of a globe on a Plane (mathematics), plane. In a map projection, ...
is a map of a part of the surface of the Earth onto a plane, which, in some cases, but not always, is the restriction of a projection in the above meaning. The
3D projection A 3D projection (or graphical projection) is a Design, design technique used to display a three-dimensional (3D) object on a two-dimensional (2D) surface. These projections rely on perspective (graphical), visual perspective and aspect analysi ...
s are also at the basis of the theory of perspective. The need for unifying the two kinds of projections and of defining the image by a central projection of any point different of the center of projection are at the origin of
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
.


Definition

Generally, a mapping where the domain and
codomain In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
are the same
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
(or
mathematical structure In mathematics, a structure on a set (or on some sets) refers to providing or endowing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the ...
) is a projection if the mapping is
idempotent Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
, which means that a projection is equal to its
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography * Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
with itself. A projection may also refer to a mapping which has a right inverse. Both notions are strongly related, as follows. Let be an idempotent mapping from a set into itself (thus ) and be the image of . If we denote by the map viewed as a map from onto and by the injection of into (so that ), then we have (so that has a right inverse). Conversely, if has a right inverse , then implies that ; that is, is idempotent.


Applications

The original notion of projection has been extended or generalized to various mathematical situations, frequently, but not always, related to geometry, for example: * In
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
: ** An operation typified by the -th
projection map In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspa ...
, written , that takes an element of the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
to the value This map is always
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
and, when each space has a
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, this map is also continuous and
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gerd Dudek, Buschi Niebergall, and Edward Vesala album), 1979 * ''Open'' (Go ...
. ** A mapping that takes an element to its
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
under a given
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
is known as the
canonical projection In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
. ** The evaluation map sends a function to the value for a fixed . The space of functions can be identified with the Cartesian product \prod_Y, and the evaluation map is a projection map from the Cartesian product. * For
relational database A relational database (RDB) is a database based on the relational model of data, as proposed by E. F. Codd in 1970. A Relational Database Management System (RDBMS) is a type of database management system that stores data in a structured for ...
s and
query language A query language, also known as data query language or database query language (DQL), is a computer language used to make queries in databases and information systems. In database systems, query languages rely on strict theory to retrieve informa ...
s, the
projection Projection or projections may refer to: Physics * Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction * The display of images by a projector Optics, graphics, and carto ...
is a
unary operation In mathematics, a unary operation is an operation with only one operand, i.e. a single input. This is in contrast to ''binary operations'', which use two operands. An example is any function , where is a set; the function is a unary operation ...
written as \Pi_( R ) where a_1,\ldots,a_n is a set of attribute names. The result of such projection is defined as the
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
that is obtained when all
tuple In mathematics, a tuple is a finite sequence or ''ordered list'' of numbers or, more generally, mathematical objects, which are called the ''elements'' of the tuple. An -tuple is a tuple of elements, where is a non-negative integer. There is o ...
s in are restricted to the set \. is a database-relation. * In
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres. Long studied for its practical applicati ...
, projection of a sphere upon a plane was used by
Ptolemy Claudius Ptolemy (; , ; ; – 160s/170s AD) was a Greco-Roman mathematician, astronomer, astrologer, geographer, and music theorist who wrote about a dozen scientific treatises, three of which were important to later Byzantine science, Byzant ...
(~150) in his Planisphaerium. The method is called
stereographic projection In mathematics, a stereographic projection is a perspective transform, perspective projection of the sphere, through a specific point (geometry), point on the sphere (the ''pole'' or ''center of projection''), onto a plane (geometry), plane (th ...
and uses a plane
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
to a sphere and a ''pole'' C diametrically opposite the point of tangency. Any point on the sphere besides determines a line intersecting the plane at the projected point for . The correspondence makes the sphere a
one-point compactification In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Al ...
for the plane when a
point at infinity In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Ad ...
is included to correspond to , which otherwise has no projection on the plane. A common instance is the
complex plane In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
where the compactification corresponds to the
Riemann sphere In mathematics, the Riemann sphere, named after Bernhard Riemann, is a Mathematical model, model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents ...
. Alternatively, a
hemisphere Hemisphere may refer to: In geometry * Hemisphere (geometry), a half of a sphere As half of Earth or any spherical astronomical object * A hemisphere of Earth ** Northern Hemisphere ** Southern Hemisphere ** Eastern Hemisphere ** Western Hemi ...
is frequently projected onto a plane using the gnomonic projection. * In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
, a
linear transformation In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
that remains unchanged if applied twice: . In other words, an
idempotent Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
operator. For example, the mapping that takes a point in three dimensions to the point is a projection. This type of projection naturally generalizes to any number of dimensions for the domain and for the codomain of the mapping. See Orthogonal projection,
Projection (linear algebra) In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it ...
. In the case of orthogonal projections, the space admits a decomposition as a product, and the projection operator is a projection in that sense as well. * In
differential topology In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
, any fiber bundle includes a projection map as part of its definition. Locally at least this map looks like a projection map in the sense of the
product topology In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seemin ...
and is therefore
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gerd Dudek, Buschi Niebergall, and Edward Vesala album), 1979 * ''Open'' (Go ...
and surjective. * In
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, a retraction is a
continuous map In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
which restricts to the
identity map Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
on its image. This satisfies a similar idempotency condition and can be considered a generalization of the projection map. The image of a retraction is called a retract of the original space. A retraction which is homotopic to the identity is known as a deformation retraction. This term is also used in
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
to refer to any split epimorphism. * The scalar projection (or resolute) of one
vector Vector most often refers to: * Euclidean vector, a quantity with a magnitude and a direction * Disease vector, an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematics a ...
onto another. * In
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, the above notion of Cartesian product of sets can be generalized to arbitrary categories. The product of some objects has a canonical projection
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
to each factor. Special cases include the projection from the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
of sets, the
product topology In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seemin ...
of
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s (which is always surjective and
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gerd Dudek, Buschi Niebergall, and Edward Vesala album), 1979 * ''Open'' (Go ...
), or from the direct product of groups, etc. Although these morphisms are often
epimorphism In category theory, an epimorphism is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f \implies g_1 = g_2. Epimorphisms are categorical analo ...
s and even surjective, they do not have to be.


References


Further reading

* Craig, Thomas (1882
A Treatise on Projections
from
University of Michigan The University of Michigan (U-M, U of M, or Michigan) is a public university, public research university in Ann Arbor, Michigan, United States. Founded in 1817, it is the oldest institution of higher education in the state. The University of Mi ...
Historical Math Collection. * {{DEFAULTSORT:Projection (Mathematics) Mathematical terminology