CMB
   HOME

TheInfoList



OR:

The cosmic microwave background (CMB, CMBR), or relic radiation, is
microwave radiation Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequencies between 300 MHz an ...
that fills all space in the
observable universe The observable universe is a Ball (mathematics), spherical region of the universe consisting of all matter that can be observation, observed from Earth; the electromagnetic radiation from these astronomical object, objects has had time to reach t ...
. With a standard
optical telescope An optical telescope gathers and focus (optics), focuses light mainly from the visible spectrum, visible part of the electromagnetic spectrum, to create a magnification, magnified image for direct visual inspection, to make a photograph, or to co ...
, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive
radio telescope A radio telescope is a specialized antenna (radio), antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the r ...
detects a faint background glow that is almost
uniform A uniform is a variety of costume worn by members of an organization while usually participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency serv ...
and is not associated with any star, galaxy, or other
object Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an a ...
. This glow is strongest in the
microwave Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
region of the electromagnetic spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers
Arno Allan Penzias Arno Allan Penzias (; April 26, 1933 – January 22, 2024) was an American physicist and radio astronomer. Along with Robert Woodrow Wilson, he discovered the cosmic microwave background radiation, for which he shared the Nobel Prize in Phys ...
and
Robert Woodrow Wilson Robert Woodrow Wilson (born January 10, 1936) is an American astronomer who, along with Arno Allan Penzias, discovered cosmic microwave background radiation (CMB) in 1964. The pair won the 1978 Nobel Prize in Physics for its discovery. While ...
was the culmination of work initiated in the 1940s. The CMB is landmark evidence of the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
theory A theory is a systematic and rational form of abstract thinking about a phenomenon, or the conclusions derived from such thinking. It involves contemplative and logical reasoning, often supported by processes such as observation, experimentation, ...
for the origin of the universe. In the Big Bang
cosmological model Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fu ...
s, during the earliest periods, the universe was filled with an opaque fog of dense, hot plasma of
sub-atomic particle In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a baryon, like ...
s. As the universe expanded, this plasma cooled to the point where protons and electrons combined to form neutral atoms of mostly hydrogen. Unlike the plasma, these atoms could not scatter thermal radiation by
Thomson scattering Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle, as described by classical electromagnetism. It is the low-energy limit of Compton scattering: the particle's kinetic energy and photon frequency ...
, and so the universe became transparent. Known as the recombination epoch, this decoupling event released
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
to travel freely through space. However, the photons have grown less energetic due to the
cosmological redshift Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther a galaxy is from the Earth, the faster ...
associated with the
expansion of the universe The expansion of the universe is the increase in proper length, distance between Gravitational binding energy, gravitationally unbound parts of the observable universe with time. It is an intrinsic and extrinsic properties (philosophy), intrins ...
. The ''surface of last scattering'' refers to a shell at the right distance in space so photons are now received that were originally emitted at the time of decoupling. The CMB is not completely smooth and uniform, showing a faint
anisotropy Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ve ...
that can be mapped by sensitive detectors. Ground and space-based experiments such as COBE,
WMAP The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
and
Planck Max Karl Ernst Ludwig Planck (; ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical p ...
have been used to measure these temperature inhomogeneities. The anisotropy structure is determined by various interactions of matter and photons up to the point of decoupling, which results in a characteristic lumpy pattern that varies with angular scale. The
distribution Distribution may refer to: Mathematics *Distribution (mathematics), generalized functions used to formulate solutions of partial differential equations *Probability distribution, the probability of a particular value or value range of a varia ...
of the anisotropy across the sky has
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
components that can be represented by a
power spectrum In signal processing, the power spectrum S_(f) of a continuous time signal x(t) describes the distribution of Power (physics), power into frequency components f composing that signal. According to Fourier analysis, any physical signal can be ...
displaying a sequence of peaks and valleys. The peak values of this spectrum hold important information about the physical properties of the early universe: the first peak determines the overall curvature of the universe, while the second and third peak detail the density of normal matter and so-called
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
, respectively. Extracting fine details from the CMB data can be challenging, since the emission has undergone modification by foreground features such as
galaxy cluster A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. Clusters consist of galax ...
s.


Features

The cosmic microwave background radiation is an emission of uniform
black body A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is ...
thermal energy The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including: * Internal energy: The energy contained within a body of matter or radiation, excluding the potential en ...
coming from all directions. Intensity of the CMB is expressed in
kelvin The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
(K), the SI unit of temperature. The CMB has a thermal black body spectrum at a temperature of . Variations in intensity are expressed as variations in temperature. The blackbody temperature uniquely characterizes the intensity of the radiation at all wavelengths; a measured
brightness temperature Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity ...
at any wavelength can be converted to a blackbody temperature. The radiation is remarkably uniform across the sky, very unlike the almost point-like structure of stars or clumps of stars in galaxies. The radiation is
isotropic In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also ...
to roughly one part in 25,000: the
root mean square In mathematics, the root mean square (abbrev. RMS, or rms) of a set of values is the square root of the set's mean square. Given a set x_i, its RMS is denoted as either x_\mathrm or \mathrm_x. The RMS is also known as the quadratic mean (denote ...
variations are just over 100 μK, after subtracting a
dipole In physics, a dipole () is an electromagnetic phenomenon which occurs in two ways: * An electric dipole moment, electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple ...
anisotropy from the
Doppler shift The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described t ...
of the background radiation. The latter is caused by the peculiar velocity of the Sun relative to the comoving cosmic rest frame as it moves at 369.82 ± 0.11 km/s towards the constellation
Crater A crater is a landform consisting of a hole or depression (geology), depression on a planetary surface, usually caused either by an object hitting the surface, or by geological activity on the planet. A crater has classically been described ...
near its boundary with the constellation Leo The CMB dipole and aberration at higher multipoles have been measured, consistent with galactic motion. Despite the very small degree of anisotropy in the CMB, many aspects can be measured with high precision and such measurements are critical for cosmological theories. In addition to temperature anisotropy, the CMB should have an angular variation in polarization. The polarisation at each direction in the sky has an orientation described in terms of E-mode and B-mode polarization. The E-mode signal is a factor of 10 less strong than the temperature anisotropy; it supplements the temperature data as they are correlated. The B-mode signal is even weaker but may contain additional cosmological data. The anisotropy is related to physical origin of the polarisation. Excitation of an electron by linear polarised light generates polarized light at 90 degrees to the incident direction. If the incoming radiation is isotropic, different incoming directions create polarizations that cancel out. If the incoming radiation has quadrupole anisotropy, residual polarization will be seen. Other than the temperature and polarization anisotropy, the CMB frequency spectrum is expected to feature tiny departures from the black-body law known as spectral distortions. These are also at the focus of an active research effort with the hope of a first measurement within the forthcoming decades, as they contain a wealth of information about the primordial universe and the formation of structures at late time. The CMB contains the vast majority of photons in the universe by a factor of 400 to 1; the number density of photons in the CMB is one billion times (109) the number density of matter in the universe. Without the expansion of the universe to cause the cooling of the CMB, the night sky would shine as brightly as the Sun. The energy density of the CMB is , about 411 photons/cm3.


History


Early speculations

In 1931,
Georges Lemaître Georges Henri Joseph Édouard Lemaître ( ; ; 17 July 1894 – 20 June 1966) was a Belgian Catholic priest, theoretical physicist, and mathematician who made major contributions to cosmology and astrophysics. He was the first to argue that the ...
speculated that remnants of the early universe may be observable as radiation, but his candidate was
cosmic rays Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar ...
. Richard C. Tolman showed in 1934 that expansion of the universe would cool blackbody radiation while maintaining a thermal spectrum. The cosmic microwave background was first predicted in 1948 by Ralph Alpher and Robert Herman, in a correction they prepared for a paper by Alpher's PhD advisor
George Gamow George Gamow (sometimes Gammoff; born Georgiy Antonovich Gamov; ; 4 March 1904 – 19 August 1968) was a Soviet and American polymath, theoretical physicist and cosmologist. He was an early advocate and developer of Georges Lemaître's Big Ba ...
. Alpher and Herman were able to estimate the temperature of the cosmic microwave background to be 5 K.


Discovery

The first published recognition of the CMB radiation as a detectable phenomenon appeared in a brief paper by
Soviet The Union of Soviet Socialist Republics. (USSR), commonly known as the Soviet Union, was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 until Dissolution of the Soviet ...
astrophysicists A. G. Doroshkevich and Igor Novikov, in the spring of 1964. In 1964, David Todd Wilkinson and Peter Roll, Robert H. Dicke's colleagues at
Princeton University Princeton University is a private university, private Ivy League research university in Princeton, New Jersey, United States. Founded in 1746 in Elizabeth, New Jersey, Elizabeth as the College of New Jersey, Princeton is the List of Colonial ...
, began constructing a Dicke radiometer to measure the cosmic microwave background. In 1964,
Arno Penzias Arno Allan Penzias (; April 26, 1933 – January 22, 2024) was an American physicist and radio astronomer. Along with Robert Woodrow Wilson, he discovered the cosmic microwave background radiation, for which he shared the Nobel Prize in Physi ...
and
Robert Woodrow Wilson Robert Woodrow Wilson (born January 10, 1936) is an American astronomer who, along with Arno Allan Penzias, discovered cosmic microwave background radiation (CMB) in 1964. The pair won the 1978 Nobel Prize in Physics for its discovery. While ...
at the Crawford Hill location of
Bell Telephone Laboratories Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the compa ...
in nearby
Holmdel Township, New Jersey Holmdel is a township in Monmouth County, in the U.S. state of New Jersey. Located near Raritan Bay in the Raritan Valley Region, the township is a regional commercial hub of Central Jersey, home to Bell Labs and PNC Bank Arts Center, and a ...
had built a Dicke radiometer that they intended to use for radio astronomy and satellite communication experiments. The antenna was constructed in 1959 to support
Project Echo Project Echo was the first passive communications satellite experiment. Each of the two American spacecraft, launched in 1960 and 1964, were metalized balloon satellites acting as passive reflectors of microwave signals. Communication sign ...
—the National Aeronautics and Space Administration's passive communications satellites, which used large Earth orbiting aluminized plastic balloons as reflectors to bounce radio signals from one point on the Earth to another. On 20 May 1964 they made their first measurement clearly showing the presence of the microwave background, with their instrument having an excess 4.2K antenna temperature which they could not account for. After receiving a telephone call from Crawford Hill, Dicke said "Boys, we've been scooped." A meeting between the Princeton and Crawford Hill groups determined that the antenna temperature was indeed due to the microwave background. Penzias and Wilson received the 1978
Nobel Prize in Physics The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
for their discovery.


Cosmic origin

The interpretation of the cosmic microwave background was a controversial issue in the late 1960s. Alternative explanations included energy from within the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, from galaxies, from intergalactic plasma and from multiple extragalactic radio sources. Two requirements would show that the microwave radiation was truly "cosmic". First, the intensity vs frequency or spectrum needed to be shown to match a thermal or blackbody source. This was accomplished by 1968 in a series of measurements of the radiation temperature at higher and lower wavelengths. Second, the radiation needed be shown to be isotropic, the same from all directions. This was also accomplished by 1970, demonstrating that this radiation was truly cosmic in origin.


Progress on theory

In the 1970s numerous studies showed that tiny deviations from isotropy in the CMB could result from events in the early universe. Harrison, Peebles and Yu, and Zel'dovich realized that the early universe would require quantum inhomogeneities that would result in temperature anisotropy at the level of 10−4 or 10−5.
Rashid Sunyaev Rashid Alievich Sunyaev (, ; born 1 March 1943 in Tashkent, USSR) is a German, Soviet, and Russian astrophysicist of Tatar descent. He got his MS degree from the Moscow Institute of Physics and Technology (MIPT) in 1966. He became a professor ...
, using the alternative name ''relic radiation'', calculated the observable imprint that these inhomogeneities would have on the cosmic microwave background.


COBE

After a lull in the 1970s caused in part by the many experimental difficulties in measuring CMB at high precision, increasingly stringent limits on the anisotropy of the cosmic microwave background were set by ground-based experiments during the 1980s. RELIKT-1, a Soviet cosmic microwave background anisotropy experiment on board the Prognoz 9 satellite (launched 1 July 1983), gave the first upper limits on the large-scale anisotropy. The other key event in the 1980s was the proposal by Alan Guth for
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
. This theory of rapid spatial expansion gave an explanation for large-scale isotropy by allowing causal connection just before the epoch of last scattering. With this and similar theories, detailed prediction encouraged larger and more ambitious experiments. The
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
Cosmic Background Explorer ( COBE) satellite orbited Earth in 1989–1996 detected and quantified the large-scale anisotropies at the limit of its detection capabilities. The
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
COBE mission clearly confirmed the primary anisotropy with the Differential Microwave Radiometer instrument, publishing their findings in 1992. The team received the
Nobel Prize The Nobel Prizes ( ; ; ) are awards administered by the Nobel Foundation and granted in accordance with the principle of "for the greatest benefit to humankind". The prizes were first awarded in 1901, marking the fifth anniversary of Alfred N ...
in physics for 2006 for this discovery.


Precision cosmology

Inspired by the COBE results, a series of ground and balloon-based experiments measured cosmic microwave background anisotropies on smaller angular scales over the two decades. The sensitivity of the new experiments improved dramatically, with a reduction in internal noise by three orders of magnitude. The primary goal of these experiments was to measure the scale of the first acoustic peak, which COBE did not have sufficient resolution to resolve. This peak corresponds to large scale density variations in the early universe that are created by gravitational instabilities, resulting in acoustical oscillations in the plasma. The first peak in the anisotropy was tentatively detected by the MAT/TOCO experiment and the result was confirmed by the
BOOMERanG A boomerang () is a thrown tool typically constructed with airfoil sections and designed to spin about an axis perpendicular to the direction of its flight, designed to return to the thrower. The origin of the word is from Australian Aborigin ...
and MAXIMA experiments. These measurements demonstrated that the geometry of the universe is approximately flat, rather than curved. They ruled out cosmic strings as a major component of cosmic structure formation and suggested
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
was the right theory of structure formation.


Observations after COBE

Inspired by the initial COBE results of an extremely isotropic and homogeneous background, a series of ground- and balloon-based experiments quantified CMB anisotropies on smaller angular scales over the next decade. The primary goal of these experiments was to measure the angular scale of the first acoustic peak, for which COBE did not have sufficient resolution. These measurements were able to rule out cosmic strings as the leading theory of cosmic structure formation, and suggested
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
was the right theory. During the 1990s, the first peak was measured with increasing sensitivity and by 2000 the BOOMERanG experiment reported that the highest power fluctuations occur at scales of approximately one angular degree. Together with other cosmological data, these results implied that the geometry of the universe is flat. A number of ground-based
interferometer Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber opt ...
s provided measurements of the fluctuations with higher accuracy over the next three years, including the
Very Small Array The Very Small Array (VSA) was a 14-element interferometric radio telescope operating between 26 and 36 GHz that is used to study the cosmic microwave background radiation. It was a collaboration between the University of Cambridge, Univer ...
,
Degree Angular Scale Interferometer The Degree Angular Scale Interferometer (DASI) was a telescope installed at the U.S. National Science Foundation's Amundsen–Scott South Pole Station in Antarctica. It was a 13-element interferometer operating between 26 and 36 GHz ( Ka b ...
(DASI), and the
Cosmic Background Imager The Cosmic Background Imager (or CBI) was a 13-element astronomical interferometer perched at an elevation of 5,080 metres (16,700 feet) at Llano de Chajnantor Observatory in the Chilean Andes. It started operations in 1999 to study the cosmi ...
(CBI). DASI made the first detection of the polarization of the CMB and the CBI provided the first E-mode polarization spectrum with compelling evidence that it is out of phase with the T-mode spectrum.


Wilkinson Microwave Anisotropy Probe

In June 2001,
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
launched a second CMB space mission,
WMAP The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
, to make much more precise measurements of the large-scale anisotropies over the full sky.
WMAP The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
used symmetric, rapid-multi-modulated scanning, rapid switching radiometers at five frequencies to minimize non-sky signal noise. The data from the mission was released in five installments, the last being the nine-year summary. The results are broadly consistent
Lambda CDM The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components: # a cosmological constant, denoted by lambda (Λ), associated with dark energy; # the postulated cold dark matte ...
models based on 6 free parameters and fitting in to Big Bang cosmology with
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
.


Degree Angular Scale Interferometer


Atacama Cosmology Telescope


Planck Surveyor

A third space mission, the ESA (European Space Agency) Planck Surveyor, was launched in May 2009 and performed an even more detailed investigation until it was shut down in October 2013. Planck employed both HEMT radiometers and
bolometer A bolometer is a device for measuring radiant heat by means of a material having a temperature-dependent electrical resistance. It was invented in 1878 by the American astronomer Samuel Pierpont Langley. Principle of operation A bolometer ...
technology and measured the CMB at a smaller scale than WMAP. Its detectors were trialled in the Antarctic Viper telescope as ACBAR ( Arcminute Cosmology Bolometer Array Receiver) experiment—which has produced the most precise measurements at small angular scales to date—and in the Archeops balloon telescope. On 21 March 2013, the European-led research team behind the ''Planck'' cosmology probe released the mission's all-sky map
565x318 jpeg3600x1800 jpeg
of the cosmic microwave background. The map suggests the universe is slightly older than researchers expected. According to the map, subtle fluctuations in temperature were imprinted on the deep sky when the cosmos was about years old. The imprint reflects ripples that arose as early, in the existence of the universe, as the first nonillionth (10−30) of a second. Apparently, these ripples gave rise to the present vast cosmic web of
galaxy cluster A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. Clusters consist of galax ...
s and
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
. Based on the 2013 data, the universe contains 4.9%
ordinary matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic parti ...
, 26.8%
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
and 68.3%
dark energy In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure format ...
. On 5 February 2015, new data was released by the ''Planck'' mission, according to which the age of the universe is
billion Billion is a word for a large number, and it has two distinct definitions: * 1,000,000,000, i.e. one thousand million, or (ten to the ninth power), as defined on the short scale. This is now the most common sense of the word in all varieties of ...
years old and the
Hubble constant Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther a galaxy is from the Earth, the faste ...
was measured to be .


South Pole Telescope


Theoretical models

The cosmic microwave background radiation and the
cosmological redshift Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther a galaxy is from the Earth, the faster ...
-distance relation are together regarded as the best available evidence for the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
event. Measurements of the CMB have made the inflationary Big Bang model the Standard Cosmological Model. The discovery of the CMB in the mid-1960s curtailed interest in
alternatives Founded in 1994, Alternatives, Action and Communication Network for International Development, is a non-governmental, international solidarity movement, international solidarity organization based in Montreal, Quebec, Canada. Alternatives works ...
such as the steady state theory. In the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
model for the formation of the
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
, inflationary cosmology predicts that after about 10−37 seconds the nascent universe underwent
exponential growth Exponential growth occurs when a quantity grows as an exponential function of time. The quantity grows at a rate directly proportional to its present size. For example, when it is 3 times as big as it is now, it will be growing 3 times as fast ...
that smoothed out nearly all irregularities. The remaining irregularities were caused by quantum fluctuations in the inflaton field that caused the inflation event. Long before the formation of stars and planets, the early universe was more compact, much hotter and, starting 10−6 seconds after the Big Bang, filled with a uniform glow from its white-hot fog of interacting plasma of
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s,
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s, and
baryon In particle physics, a baryon is a type of composite particle, composite subatomic particle that contains an odd number of valence quarks, conventionally three. proton, Protons and neutron, neutrons are examples of baryons; because baryons are ...
s. As the universe expanded, adiabatic cooling caused the energy density of the plasma to decrease until it became favorable for
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s to combine with
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s, forming
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
atoms. This recombination event happened when the temperature was around 3000 K or when the universe was approximately 379,000 years old. As photons did not interact with these electrically neutral atoms, the former began to travel freely through space, resulting in the decoupling of matter and radiation. The
color temperature Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non-reflective body. The temperature of the ideal emitter that matches the color most clos ...
of the ensemble of decoupled photons has continued to diminish ever since; now down to , it will continue to drop as the universe expands. The intensity of the radiation corresponds to black-body radiation at 2.726 K because red-shifted black-body radiation is just like black-body radiation at a lower temperature. According to the Big Bang model, the radiation from the sky we measure today comes from a spherical surface called ''the surface of last scattering''. This represents the set of locations in space at which the decoupling event is estimated to have occurred and at a point in time such that the photons from that distance have just reached observers. Most of the radiation energy in the universe is in the cosmic microwave background, making up a fraction of roughly of the total density of the universe. Two of the greatest successes of the Big Bang theory are its prediction of the almost perfect black body spectrum and its detailed prediction of the anisotropies in the cosmic microwave background. The CMB spectrum has become the most precisely measured black body spectrum in nature.


Predictions based on the Big Bang model

In the late 1940s Alpher and Herman reasoned that if there was a Big Bang, the expansion of the universe would have stretched the high-energy radiation of the very early universe into the microwave region of the
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
, and down to a temperature of about 5 K. They were slightly off with their estimate, but they had the right idea. They predicted the CMB. It took another 15 years for Penzias and Wilson to discover that the microwave background was actually there. According to standard cosmology, the CMB gives a snapshot of the hot early
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
at the point in time when the temperature dropped enough to allow
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s and
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s to form
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
atoms. This event made the universe nearly transparent to radiation because light was no longer being scattered off free electrons. When this occurred some 380,000 years after the Big Bang, the temperature of the universe was about 3,000 K. This corresponds to an ambient energy of about , which is much less than the ionization energy of hydrogen. This epoch is generally known as the "time of last scattering" or the period of recombination or decoupling. Since decoupling, the color temperature of the background radiation has dropped by an average factor of 1,089 due to the expansion of the universe. As the universe expands, the CMB photons are
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and e ...
ed, causing them to decrease in energy. The color temperature of this radiation stays
inversely proportional In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio. The ratio is called ''coefficient of proportionality'' (or ''proportionality ...
to a parameter that describes the relative expansion of the universe over time, known as the scale length. The color temperature ''T''r of the CMB as a function of redshift, ''z'', can be shown to be proportional to the color temperature of the CMB as observed in the present day (2.725 K or 0.2348 meV): :''T''r = 2.725 K × (1 + ''z'') The high degree of uniformity throughout the
observable universe The observable universe is a Ball (mathematics), spherical region of the universe consisting of all matter that can be observation, observed from Earth; the electromagnetic radiation from these astronomical object, objects has had time to reach t ...
and its faint but measured anisotropy lend strong support for the Big Bang model in general and the ΛCDM ("Lambda Cold Dark Matter") model in particular. Moreover, the fluctuations are
coherent Coherence is, in general, a state or situation in which all the parts or ideas fit together well so that they form a united whole. More specifically, coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics ...
on angular scales that are larger than the apparent
cosmological horizon A cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. ...
at recombination. Either such coherence is acausally fine-tuned, or
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
occurred.


Primary anisotropy

The
anisotropy Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ve ...
, or directional dependency, of the cosmic microwave background is divided into two types: primary anisotropy, due to effects that occur at the surface of last scattering and before; and secondary anisotropy, due to effects such as interactions of the background radiation with intervening hot gas or gravitational potentials, which occur between the last scattering surface and the observer. The structure of the cosmic microwave background anisotropies is principally determined by two effects: acoustic oscillations and diffusion damping (also called collisionless damping or
Silk Silk is a natural fiber, natural protein fiber, some forms of which can be weaving, woven into textiles. The protein fiber of silk is composed mainly of fibroin and is most commonly produced by certain insect larvae to form cocoon (silk), c ...
damping). The acoustic oscillations arise because of a conflict in the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
baryon In particle physics, a baryon is a type of composite particle, composite subatomic particle that contains an odd number of valence quarks, conventionally three. proton, Protons and neutron, neutrons are examples of baryons; because baryons are ...
plasma in the early universe. The pressure of the photons tends to erase anisotropies, whereas the gravitational attraction of the baryons, moving at speeds much slower than light, makes them tend to collapse to form overdensities. These two effects compete to create acoustic oscillations, which give the microwave background its characteristic peak structure. The peaks correspond, roughly, to resonances in which the photons decouple when a particular mode is at its peak amplitude. The peaks contain interesting physical signatures. The angular scale of the first peak determines the curvature of the universe (but not the
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
of the universe). The next peak—ratio of the odd peaks to the even peaks—determines the reduced baryon density. The third peak can be used to get information about the dark-matter density. The locations of the peaks give important information about the nature of the primordial density perturbations. There are two fundamental types of density perturbations called ''adiabatic'' and ''isocurvature''. A general density perturbation is a mixture of both, and different theories that purport to explain the primordial density perturbation spectrum predict different mixtures. ; Adiabatic density perturbations:In an adiabatic density perturbation, the fractional additional number density of each type of particle (baryons,
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s, etc.) is the same. That is, if at one place there is a 1% higher number density of baryons than average, then at that place there is a 1% higher number density of photons (and a 1% higher number density in neutrinos) than average.
Cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
predicts that the primordial perturbations are adiabatic. ; Isocurvature density perturbations:In an isocurvature density perturbation, the sum (over different types of particle) of the fractional additional densities is zero. That is, a perturbation where at some spot there is 1% more energy in baryons than average, 1% more energy in photons than average, and 2% energy in neutrinos than average, would be a pure isocurvature perturbation. Hypothetical cosmic strings would produce mostly isocurvature primordial perturbations. The CMB spectrum can distinguish between these two because these two types of perturbations produce different peak locations. Isocurvature density perturbations produce a series of peaks whose angular scales (''ℓ'' values of the peaks) are roughly in the ratio 1 : 3 : 5 : ..., while adiabatic density perturbations produce peaks whose locations are in the ratio 1 : 2 : 3 : ... Observations are consistent with the primordial density perturbations being entirely adiabatic, providing key support for inflation, and ruling out many models of structure formation involving, for example, cosmic strings. Collisionless damping is caused by two effects, when the treatment of the primordial plasma as
fluid In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
begins to break down: * the increasing
mean free path In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
of the photons as the primordial plasma becomes increasingly rarefied in an expanding universe, * the finite depth of the last scattering surface (LSS), which causes the mean free path to increase rapidly during decoupling, even while some Compton scattering is still occurring. These effects contribute about equally to the suppression of anisotropies at small scales and give rise to the characteristic exponential damping tail seen in the very small angular scale anisotropies. The depth of the LSS refers to the fact that the decoupling of the photons and baryons does not happen instantaneously, but instead requires an appreciable fraction of the age of the universe up to that era. One method of quantifying how long this process took uses the ''photon visibility function'' (PVF). This function is defined so that, denoting the PVF by ''P''(''t''), the probability that a CMB photon last scattered between time ''t'' and is given by ''P''(''t'')''dt''. The maximum of the PVF (the time when it is most likely that a given CMB photon last scattered) is known quite precisely. The first-year
WMAP The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
results put the time at which ''P''(''t'') has a maximum as 372,000 years. This is often taken as the "time" at which the CMB formed. However, to figure out how it took the photons and baryons to decouple, we need a measure of the width of the PVF. The WMAP team finds that the PVF is greater than half of its maximal value (the "full width at half maximum", or FWHM) over an interval of 115,000 years. By this measure, decoupling took place over roughly 115,000 years, and thus when it was complete, the universe was roughly 487,000 years old.


Late time anisotropy

Since the CMB came into existence, it has apparently been modified by several subsequent physical processes, which are collectively referred to as late-time anisotropy, or secondary anisotropy. When the CMB photons became free to travel unimpeded, ordinary matter in the universe was mostly in the form of neutral hydrogen and helium atoms. However, observations of galaxies today seem to indicate that most of the volume of the
intergalactic medium Intergalactic may refer to: * "Intergalactic" (song), a song by the Beastie Boys * ''Intergalactic'' (TV series), a 2021 UK science fiction TV series * Intergalactic space * Intergalactic travel, travel between galaxies in science fiction and ...
(IGM) consists of ionized material (since there are few absorption lines due to hydrogen atoms). This implies a period of
reionization In the fields of Big Bang theory and physical cosmology, cosmology, reionization is the process that caused electrically neutral atoms in the primordial universe to reionize after the lapse of the "Timeline of the Big Bang#Dark Ages, dark ages". ...
during which some of the material of the universe was broken into hydrogen ions. The CMB photons are scattered by free charges such as electrons that are not bound in atoms. In an ionized universe, such charged particles have been liberated from neutral atoms by ionizing (ultraviolet) radiation. Today these free charges are at sufficiently low density in most of the volume of the universe that they do not measurably affect the CMB. However, if the IGM was ionized at very early times when the universe was still denser, then there are two main effects on the CMB: # Small scale anisotropies are erased. (Just as when looking at an object through fog, details of the object appear fuzzy.) # The physics of how photons are scattered by free electrons (
Thomson scattering Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle, as described by classical electromagnetism. It is the low-energy limit of Compton scattering: the particle's kinetic energy and photon frequency ...
) induces polarization anisotropies on large angular scales. This broad angle polarization is correlated with the broad angle temperature perturbation. Both of these effects have been observed by the WMAP spacecraft, providing evidence that the universe was ionized at very early times, at a
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and e ...
around 10. The detailed provenance of this early ionizing radiation is still a matter of scientific debate. It may have included starlight from the very first population of stars ( population III stars), supernovae when these first stars reached the end of their lives, or the ionizing radiation produced by the accretion disks of massive black holes. The time following the emission of the cosmic microwave background—and before the observation of the first stars—is semi-humorously referred to by cosmologists as the
Dark Age The ''Dark Ages'' is a term for the Early Middle Ages (–10th centuries), or occasionally the entire Middle Ages (–15th centuries), in Western Europe after the fall of the Western Roman Empire, which characterises it as marked by economic, int ...
, and is a period which is under intense study by astronomers (see 21 centimeter radiation). Two other effects which occurred between reionization and our observations of the cosmic microwave background, and which appear to cause anisotropies, are the Sunyaev–Zel'dovich effect, where a cloud of high-energy electrons scatters the radiation, transferring some of its energy to the CMB photons, and the
Sachs–Wolfe effect The Sachs–Wolfe effect, named after Rainer K. Sachs and Arthur M. Wolfe, is a property of the cosmic microwave background radiation (CMB), in which photons from the CMB are gravitationally redshifted, causing the CMB spectrum to appear uneven ...
, which causes photons from the Cosmic Microwave Background to be gravitationally redshifted or blueshifted due to changing gravitational fields.


Alternative theories

The standard cosmology that includes the Big Bang "enjoys considerable popularity among the practicing cosmologists" However, there are challenges to the standard big bang framework for explaining CMB data. In particular standard cosmology requires fine-tuning of some free parameters, with different values supported by different experimental data. As an example of the fine-tuning issue, standard cosmology cannot predict the present temperature of the relic radiation, T_0. This value of T_0 is one of the best results of experimental cosmology and the
steady state model In cosmology, the steady-state model or steady-state theory was an alternative to the Big Bang theory. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus a ...
can predict it. However, alternative models have their own set of problems and they have only made post-facto explanations of existing observations. Nevertheless, these alternatives have played an important historic role in providing ideas for and challenges to the standard explanation.


Polarization

The cosmic microwave background is polarized at the level of a few microkelvin. There are two types of polarization, called E-mode (or gradient-mode) and B-mode (or curl mode). This is in analogy to
electrostatics Electrostatics is a branch of physics that studies slow-moving or stationary electric charges. Since classical antiquity, classical times, it has been known that some materials, such as amber, attract lightweight particles after triboelectric e ...
, in which the electric field (''E''-field) has a vanishing
curl cURL (pronounced like "curl", ) is a free and open source computer program for transferring data to and from Internet servers. It can download a URL from a web server over HTTP, and supports a variety of other network protocols, URI scheme ...
and the magnetic field (''B''-field) has a vanishing
divergence In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the rate that the vector field alters the volume in an infinitesimal neighborhood of each point. (In 2D this "volume" refers to ...
.


E-modes

The E-modes arise from
Thomson scattering Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle, as described by classical electromagnetism. It is the low-energy limit of Compton scattering: the particle's kinetic energy and photon frequency ...
in a heterogeneous plasma. E-modes were first seen in 2002 by the
Degree Angular Scale Interferometer The Degree Angular Scale Interferometer (DASI) was a telescope installed at the U.S. National Science Foundation's Amundsen–Scott South Pole Station in Antarctica. It was a 13-element interferometer operating between 26 and 36 GHz ( Ka b ...
(DASI).


B-modes

B-modes are expected to be an order of magnitude weaker than the E-modes. The former are not produced by standard scalar type perturbations, but are generated by
gravitational wave Gravitational waves are oscillations of the gravitational field that Wave propagation, travel through space at the speed of light; they are generated by the relative motion of gravity, gravitating masses. They were proposed by Oliver Heaviside i ...
s during
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
shortly after the big bang. However, gravitational lensing of the stronger E-modes can also produce B-mode polarization. Detecting the original B-modes signal requires analysis of the contamination caused by lensing of the relatively strong E-mode signal.


Primordial gravitational waves

Models of "slow-roll"
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
in the early universe predicts primordial
gravitational waves Gravitational waves are oscillations of the gravitational field that travel through space at the speed of light; they are generated by the relative motion of gravitating masses. They were proposed by Oliver Heaviside in 1893 and then later by H ...
that would impact the polarisation of the cosmic microwave background, creating a specific pattern of B-mode polarization. Detection of this pattern would support the theory of inflation and their strength can confirm and exclude different models of inflation. Claims that this characteristic pattern of B-mode polarization had been measured by BICEP2 instrument were later attributed to
cosmic dust Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can ...
due to new results of the Planck experiment.


Gravitational lensing

The second type of B-modes was discovered in 2013 using the South Pole Telescope with help from the
Herschel Space Observatory The Herschel Space Observatory was a space observatory built and operated by the European Space Agency (ESA). It was active from 2009 to 2013, and was the largest infrared telescope ever launched until the launch of the James Webb Space Telesco ...
. In October 2014, a measurement of the B-mode polarization at 150 GHz was published by the POLARBEAR experiment. Compared to BICEP2, POLARBEAR focuses on a smaller patch of the sky and is less susceptible to dust effects. The team reported that POLARBEAR's measured B-mode polarization was of cosmological origin (and not just due to dust) at a 97.2% confidence level.


Multipole analysis

The CMB angular anisotropies are usually presented in terms of power per multipole. Cosmic Microwave Background review by Scott and Smoot. The map of temperature across the sky, T(\theta,\varphi), is written as coefficients of
spherical harmonics In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics co ...
, T(\theta,\varphi) = \sum_ a_ Y_(\theta,\varphi) where the a_ term measures the strength of the angular oscillation in Y_(\theta,\varphi), and ''ℓ'' is the multipole number while ''m'' is the azimuthal number. The azimuthal variation is not significant and is removed by applying the angular correlation function, giving power spectrum term C_\equiv \langle , a_, ^2 \rangle. Increasing values of ''ℓ'' correspond to higher multipole moments of CMB, meaning more rapid variation with angle.


CMBR monopole term (''ℓ'' = 0)

The monopole term, , is the constant isotropic mean temperature of the CMB, with one standard deviation confidence. This term must be measured with absolute temperature devices, such as the FIRAS instrument on the COBE satellite.


CMBR dipole anisotropy (''ℓ'' = 1)

CMB dipole represents the largest anisotropy, which is in the first spherical harmonic (), a cosine function. The amplitude of CMB dipole is around . The CMB dipole moment is interpreted as the peculiar motion of the Earth relative to the CMB. Its amplitude depends on the time due to the Earth's orbit about the barycenter of the solar system. This enables us to add a time-dependent term to the dipole expression. The modulation of this term is 1 year, which fits the observation done by COBE FIRAS. The dipole moment does not encode any primordial information. From the CMB data, it is seen that the Sun appears to be moving at relative to the reference frame of the CMB (also called the CMB rest frame, or the frame of reference in which there is no motion through the CMB). The
Local Group The Local Group is the galaxy group that includes the Milky Way, where Earth is located. It has a total diameter of roughly , and a total mass of the order of . It consists of two collections of galaxies in a " dumbbell" shape; the Milky Way ...
 — the galaxy group that includes our own Milky Way galaxy — appears to be moving at in the direction of galactic longitude , . The dipole is now used to calibrate mapping studies.


Multipole (''ℓ'' ≥ 2)

The temperature variation in the CMB temperature maps at higher multipoles, or , is considered to be the result of perturbations of the density in the early Universe, before the recombination epoch at a redshift of around . Before recombination, the Universe consisted of a hot, dense plasma of electrons and baryons. In such a hot dense environment, electrons and protons could not form any neutral atoms. The baryons in such early Universe remained highly ionized and so were tightly coupled with photons through the effect of Thompson scattering. These phenomena caused the pressure and gravitational effects to act against each other, and triggered fluctuations in the photon-baryon plasma. Quickly after the recombination epoch, the rapid expansion of the universe caused the plasma to cool down and these fluctuations are "frozen into" the CMB maps we observe today.


Data analysis challenges

Raw CMBR data, even from space vehicles such as WMAP or Planck, contain foreground effects that completely obscure the fine-scale structure of the cosmic microwave background. The fine-scale structure is superimposed on the raw CMBR data but is too small to be seen at the scale of the raw data. The most prominent of the foreground effects is the dipole anisotropy caused by the Sun's motion relative to the CMBR background. The dipole anisotropy and others due to Earth's annual motion relative to the Sun and numerous microwave sources in the galactic plane and elsewhere must be subtracted out to reveal the extremely tiny variations characterizing the fine-scale structure of the CMBR background. The detailed analysis of CMBR data to produce maps, an angular power spectrum, and ultimately cosmological parameters is a complicated, computationally difficult problem. In practice it is hard to take the effects of noise and foreground sources into account. In particular, these foregrounds are dominated by galactic emissions such as
bremsstrahlung In particle physics, bremsstrahlung (; ; ) is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic ...
,
synchrotron A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The strength of the magnetic field which bends the particle beam i ...
, and
dust Dust is made of particle size, fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian processes, aeolian process), Types of volcan ...
that emit in the microwave band; in practice, the galaxy has to be removed, resulting in a CMB map that is not a full-sky map. In addition, point sources like galaxies and clusters represent foreground sources which must be removed so as not to distort the short scale structure of the CMB power spectrum. Constraints on many cosmological parameters can be obtained from their effects on the power spectrum, and results are often calculated using
Markov chain Monte Carlo In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution. Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that ...
sampling techniques.


Anomalies

With the increasingly precise data provided by WMAP, there have been a number of claims that the CMB exhibits anomalies, such as very large scale anisotropies, anomalous alignments, and non-Gaussian distributions. The most longstanding of these is the low-''ℓ'' multipole controversy. Even in the COBE map, it was observed that the
quadrupole A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure re ...
(, spherical harmonic) has a low amplitude compared to the predictions of the Big Bang. In particular, the quadrupole and octupole () modes appear to have an unexplained alignment with each other and with both the ecliptic plane and
equinox A solar equinox is a moment in time when the Sun appears directly above the equator, rather than to its north or south. On the day of the equinox, the Sun appears to rise directly east and set directly west. This occurs twice each year, arou ...
es. A number of groups have suggested that this could be the signature of quantum corrections or new physics at the greatest observable scales; other groups suspect systematic errors in the data. Ultimately, due to the foregrounds and the cosmic variance problem, the greatest modes will never be as well measured as the small angular scale modes. The analyses were performed on two maps that have had the foregrounds removed as far as possible: the "internal linear combination" map of the WMAP collaboration and a similar map prepared by
Max Tegmark Max Erik Tegmark (born 5 May 1967) is a Swedish-American physicist, machine learning researcher and author. He is best known for his book ''Life 3.0'' about what the world might look like as artificial intelligence continues to improve. Tegmark i ...
and others. This paper warns that "the statistics of this internal linear combination map are complex and inappropriate for most CMB analyses." Later analyses have pointed out that these are the modes most susceptible to foreground contamination from synchrotron, dust, and bremsstrahlung emission, and from experimental uncertainty in the monopole and dipole. A full
Bayesian analysis Thomas Bayes ( ; c. 1701 – 1761) was an English statistician, philosopher, and Presbyterian Presbyterianism is a historically Reformed Protestant tradition named for its form of church government by representative assemblies of elde ...
of the WMAP power spectrum demonstrates that the quadrupole prediction of Lambda-CDM cosmology is consistent with the data at the 10% level and that the observed octupole is not remarkable. Carefully accounting for the procedure used to remove the foregrounds from the full sky map further reduces the significance of the alignment by ~5%. Recent observations with the Planck telescope, which is very much more sensitive than WMAP and has a larger angular resolution, record the same anomaly, and so instrumental error (but not foreground contamination) appears to be ruled out. Coincidence is a possible explanation, chief scientist from
WMAP The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
, Charles L. Bennett suggested coincidence and human psychology were involved, "I do think there is a bit of a psychological effect; people want to find unusual things." Measurements of the density of quasars based on
Wide-field Infrared Survey Explorer Wide-field Infrared Survey Explorer (WISE, List of observatory codes, observatory code C51, Explorer 92 and MIDEX-6) was a NASA infrared astronomy Space observatory, space telescope in the Explorers Program launched in December 2009.. . WISE L ...
data finds a dipole significantly different from the one extracted from the CMB anisotropy. This difference is conflict with the
cosmological principle In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is uniformly isotropic and homogeneous when viewed on a large enough scale, since the forces are expected to act equa ...
.


Future evolution

Assuming the universe keeps expanding and it does not suffer a
Big Crunch The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach absolute zero, an eve ...
, a
Big Rip In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is p ...
, or another similar fate, the cosmic microwave background will continue redshifting until it will no longer be detectable, and will be superseded first by the one produced by
starlight Starlight is the light emitted by stars. It typically refers to visible electromagnetic radiation from stars other than the Sun, observable from Earth at night, although a component of starlight is observable from Earth during daytime. Sunlig ...
, and perhaps, later by the background radiation fields of processes that may take place in the far future of the universe such as
proton decay In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov ...
, evaporation of black holes, and
positronium Positronium (Ps) is a system consisting of an electron and its antimatter, anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two part ...
decay.


Timeline of prediction, discovery and interpretation


Thermal (non-microwave background) temperature predictions

* 1896 –
Charles Édouard Guillaume Charles Édouard Guillaume (; 15 February 1861 – 13 June 1938) was a Swiss physicist who received the Nobel Prize in Physics in 1920 "for the service he had rendered to precision measurements in physics by his discovery of anomalies in nickel ...
estimates the "radiation of the stars" to be 5–6  K.Guillaume, C.-É., 1896, ''La Nature'' 24, series 2, p. 234 * 1926 – Sir
Arthur Eddington Sir Arthur Stanley Eddington, (28 December 1882 – 22 November 1944) was an English astronomer, physicist, and mathematician. He was also a philosopher of science and a populariser of science. The Eddington limit, the natural limit to the lu ...
estimates the non-thermal radiation of
starlight Starlight is the light emitted by stars. It typically refers to visible electromagnetic radiation from stars other than the Sun, observable from Earth at night, although a component of starlight is observable from Earth during daytime. Sunlig ...
in the galaxy "... by the formula the effective temperature corresponding to this density is 3.18° absolute ... black body". * 1930s – Cosmologist Erich Regener calculates that the non-thermal spectrum of cosmic rays in the galaxy has an effective temperature of 2.8 K. * 1931 – Term ''microwave'' first used in print: "When trials with wavelengths as low as 18 cm. were made known, there was undisguised surprise+that the problem of the micro-wave had been solved so soon." ''Telegraph & Telephone Journal'' XVII. 179/1 * 1934 –
Richard Tolman Richard Chace Tolman (March 4, 1881 – September 5, 1948) was an American mathematical physicist and physical chemist who made many contributions to statistical mechanics and theoretical cosmology. He was a professor at the California In ...
shows that black-body radiation in an expanding universe cools but remains thermal. * 1946 –
Robert Dicke Robert Henry Dicke (; May 6, 1916 – March 4, 1997) was an American astronomer and physicist who made important contributions to the fields of astrophysics, atomic physics, cosmology and gravity. He was the Albert Einstein Professor in Scien ...
predicts "... radiation from cosmic matter" at < 20 K, but did not refer to background radiation. "In 1946, Robert Dicke and coworkers at MIT tested equipment that could test a cosmic microwave background of intensity corresponding to about 20K in the microwave region. However, they did not refer to such a background, but only to 'radiation from cosmic matter'. Also, this work was unrelated to cosmology and is only mentioned because it suggests that by 1950, detection of the background radiation might have been technically possible, and also because of Dicke's later role in the discovery". See also * 1946 –
George Gamow George Gamow (sometimes Gammoff; born Georgiy Antonovich Gamov; ; 4 March 1904 – 19 August 1968) was a Soviet and American polymath, theoretical physicist and cosmologist. He was an early advocate and developer of Georges Lemaître's Big Ba ...
calculates a temperature of 50 K (assuming a 3-billion year old universe),George Gamow,
The Creation Of The Universe
' p.50 (Dover reprint of revised 1961 edition)
commenting it "... is in reasonable agreement with the actual temperature of interstellar space", but does not mention background radiation. * 1953 – Erwin Finlay-Freundlich in support of his tired light theory, derives a blackbody temperature for intergalactic space of 2.3 K and in the following year values of 1.9K and 6.0K.


Microwave background radiation predictions and measurements

* 1941 –
Andrew McKellar Andrew McKellar, MBE, FRSC (February 2, 1910 – May 6, 1960) was a Canadian astronomer who first detected the presence of molecular matter in interstellar space, and found the first evidence of the cosmic radiation left over from the Big Bang. He ...
detected a "rotational" temperature of 2.3  K for the interstellar medium by comparing the population of CN doublet lines measured by W. S. Adams in a B star. * 1948 – Ralph Alpher and Robert Herman estimate "the temperature in the universe" at 5 K. Although they do not specifically mention microwave background radiation, it may be inferred. * 1953 –
George Gamow George Gamow (sometimes Gammoff; born Georgiy Antonovich Gamov; ; 4 March 1904 – 19 August 1968) was a Soviet and American polymath, theoretical physicist and cosmologist. He was an early advocate and developer of Georges Lemaître's Big Ba ...
estimates 7 K based on a model that does not rely on a free parameter * 1955 – Émile Le Roux of the Nançay Radio Observatory, in a sky survey at ''λ'' = 33 cm, initially reported a near-isotropic background radiation of 3 kelvins, plus or minus 2; he did not recognize the cosmological significance and later revised the error bars to 20K. * 1957 – Tigran Shmaonov reports that "the absolute effective temperature of the radioemission background ... is 4±3 K". with radiation intensity was independent of either time or direction of observation. Although Shamonov did not recognize it at the time, it is now clear that Shmaonov did observe the cosmic microwave background at a wavelength of 3.2 cm * 1964 – A. G. Doroshkevich and Igor Dmitrievich Novikov publish a brief paper suggesting microwave searches for the black-body radiation predicted by Gamow, Alpher, and Herman, where they name the CMB radiation phenomenon as detectable. * 1964–65 –
Arno Penzias Arno Allan Penzias (; April 26, 1933 – January 22, 2024) was an American physicist and radio astronomer. Along with Robert Woodrow Wilson, he discovered the cosmic microwave background radiation, for which he shared the Nobel Prize in Physi ...
and
Robert Woodrow Wilson Robert Woodrow Wilson (born January 10, 1936) is an American astronomer who, along with Arno Allan Penzias, discovered cosmic microwave background radiation (CMB) in 1964. The pair won the 1978 Nobel Prize in Physics for its discovery. While ...
measure the temperature to be approximately 3 K.
Robert Dicke Robert Henry Dicke (; May 6, 1916 – March 4, 1997) was an American astronomer and physicist who made important contributions to the fields of astrophysics, atomic physics, cosmology and gravity. He was the Albert Einstein Professor in Scien ...
, James Peebles, P. G. Roll, and D. T. Wilkinson interpret this radiation as a signature of the Big Bang. * 1966 – Rainer K. Sachs and Arthur M. Wolfe theoretically predict microwave background fluctuation amplitudes created by
gravitational potential In classical mechanics, the gravitational potential is a scalar potential associating with each point in space the work (energy transferred) per unit mass that would be needed to move an object to that point from a fixed reference point in the ...
variations between observers and the last scattering surface (see ''
Sachs–Wolfe effect The Sachs–Wolfe effect, named after Rainer K. Sachs and Arthur M. Wolfe, is a property of the cosmic microwave background radiation (CMB), in which photons from the CMB are gravitationally redshifted, causing the CMB spectrum to appear uneven ...
''). * 1968 –
Martin Rees Martin John Rees, Baron Rees of Ludlow, * 2018 – The final data and maps from the Planck telescope is released, with improved measurements of the polarization on large scales. * 2019 – Planck telescope analyses of their final 2018 data continue to be released.


In popular culture

* In the ''
Stargate Universe ''Stargate Universe'' (often abbreviated as ''SGU'') is a military science fiction drama television series and part of MGM's ''Stargate'' franchise. It follows the adventures of a present-day, multinational exploration team traveling on the An ...
'' TV series (2009–2011), an
ancient Ancient history is a time period from the beginning of writing and recorded human history through late antiquity. The span of recorded history is roughly 5,000 years, beginning with the development of Sumerian cuneiform script. Ancient h ...
spaceship, ''Destiny'', was built to study patterns in the CMBR which is a sentient message left over from the beginning of time. * In '' Wheelers'', a novel (2000) by Ian Stewart & Jack Cohen, CMBR is explained as the encrypted transmissions of an ancient civilization. This allows the Jovian "blimps" to have a society older than the currently-observed age of the universe. * In '' The Three-Body Problem'', a 2008 novel by
Liu Cixin Liu Cixin (, pronounced ; born 23 June 1963) is a Chinese computer engineer and science fiction writer. In English translations of his works, his name is given as Cixin Liu. He is sometimes called "''Da'' Liu" ("Big Liu") by his fellow sc ...
, a probe from an alien civilization compromises instruments monitoring the CMBR in order to deceive a character into believing the civilization has the power to manipulate the CMBR itself. * The 2017 issue of the Swiss 20 francs bill lists several astronomical objects with their distances – the CMB is mentioned with 430 · 1015
light-second The light-second is a unit of length useful in astronomy, telecommunications Telecommunication, often used in its plural form or abbreviated as telecom, is the transmission of information over a distance using electronic means, typically t ...
s. * In the 2021 Marvel series ''
WandaVision ''WandaVision'' is an American television miniseries created by Jac Schaeffer for the streaming service Disney+, based on Marvel Comics featuring the characters Wanda Maximoff / Scarlet Witch and Vision. It is the first television series i ...
'', a mysterious television broadcast is discovered within the Cosmic Microwave Background.


See also

* * * * * * * * * * * * * *


Notes


References


Further reading

* * *


External links


Student Friendly Intro to the CMB
A pedagogic, step-by-step introduction to the cosmic microwave background power spectrum analysis suitable for those with an undergraduate physics background. More in depth than typical online sites. Less dense than cosmology texts.
CMBR Theme on arxiv.org

Audio: Fraser Cain and Dr. Pamela Gay – Astronomy Cast. The Big Bang and Cosmic Microwave Background – October 2006

Visualization of the CMB data from the Planck mission
* {{Authority control Astronomical radio sources Astrophysics Cosmic background radiation *B-modes Inflation (cosmology) Observational astronomy Physical cosmological concepts Radio astronomy