AdS-CFT
   HOME

TheInfoList



OR:

In
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict List of natural phenomena, natural phenomena. This is in contrast to experimental p ...
, the anti-de Sitter/conformal field theory correspondence (frequently abbreviated as AdS/CFT) is a conjectured relationship between two kinds of physical theories. On one side are
anti-de Sitter space In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a symmetric_space, maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are na ...
s (AdS) that are used in theories of
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
, formulated in terms of
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
or
M-theory In physics, M-theory is a theory that unifies all Consistency, consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1 ...
. On the other side of the correspondence are
conformal field theories A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometime ...
(CFT) that are
quantum field theories In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatom ...
, including theories similar to the Yang–Mills theories that describe elementary particles. The duality represents a major advance in the understanding of string theory and quantum gravity. This is because it provides a
non-perturbative In mathematics and physics, a non-perturbative function (mathematics), function or process is one that cannot be described by perturbation theory. An example is the function : f(x) = e^, which does not equal its own Taylor series in any neighbo ...
formulation of string theory with certain
boundary condition In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satis ...
s and because it is the most successful realization of the
holographic principle The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region – such as a ...
, an idea in quantum gravity originally proposed by
Gerard 't Hooft Gerardus "Gerard" 't Hooft (; born July 5, 1946) is a Dutch theoretical physicist and professor at Utrecht University, the Netherlands. He shared the 1999 Nobel Prize in Physics with his thesis advisor Martinus J. G. Veltman "for elucidating t ...
and promoted by
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birth anniversary was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an Americ ...
. It also provides a powerful toolkit for studying strongly coupled quantum field theories. Much of the usefulness of the duality results from the fact that it is a strong–weak duality: when the fields of the quantum field theory are strongly interacting, the ones in the gravitational theory are weakly interacting and thus more mathematically tractable. This fact has been used to study many aspects of
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics * Nuclear space *Nuclear ...
and
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
by translating problems in those subjects into more mathematically tractable problems in string theory. The AdS/CFT correspondence was first proposed by Juan Maldacena in late 1997. Important aspects of the correspondence were soon elaborated on in two articles, one by Steven Gubser, Igor Klebanov and Alexander Polyakov, and another by
Edward Witten Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the sc ...
. By 2015, Maldacena's article had over 10,000 citations, becoming the most highly cited article in the field of
high energy physics Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the stu ...
. One of the most prominent examples of the AdS/CFT correspondence has been the AdS5/CFT4 correspondence: a relation between ''N'' = 4 supersymmetric Yang–Mills theory in 3+1 dimensions and type IIB superstring theory on .


Background


Quantum gravity and strings

Current understanding of
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
is based on
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
's
general theory of relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physi ...
. Formulated in 1915, general relativity explains gravity in terms of the geometry of space and time, or
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
. It is formulated in the language of
classical physics Classical physics refers to physics theories that are non-quantum or both non-quantum and non-relativistic, depending on the context. In historical discussions, ''classical physics'' refers to pre-1900 physics, while '' modern physics'' refers to ...
that was developed by physicists such as
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
and
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
. The other nongravitational forces are explained in the framework of
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
. Developed in the first half of the twentieth century by a number of different physicists, quantum mechanics provides a radically different way of describing physical phenomena based on probability.
Quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
is the branch of physics that seeks to describe gravity using the principles of quantum mechanics. Currently, a popular approach to quantum gravity is
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
, which models
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a c ...
s not as zero-dimensional points but as one-dimensional objects called strings. In the AdS/CFT correspondence, one typically considers theories of quantum gravity derived from string theory or its modern extension,
M-theory In physics, M-theory is a theory that unifies all Consistency, consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1 ...
. In everyday life, there are three familiar dimensions of space (up/down, left/right, and forward/backward), and there is one dimension of time. Thus, in the language of modern physics, one says that spacetime is four-dimensional. One peculiar feature of string theory and M-theory is that these theories require
extra dimensions In physics, extra dimensions or extra-dimensional spaces are proposed as additional space or time dimensions beyond the (3 + 1) typical of observed spacetime — meaning 5-dimensional or higher. such as the first attempts based on the K ...
of spacetime for their mathematical consistency: in string theory spacetime is ten-dimensional, while in M-theory it is eleven-dimensional. The quantum gravity theories appearing in the AdS/CFT correspondence are typically obtained from string and M-theory by a process known as compactification. This produces a theory in which spacetime has effectively a lower number of dimensions and the extra dimensions are "curled up" into circles. A standard analogy for compactification is to consider a multidimensional object such as a garden hose. If the hose is viewed from a sufficient distance, it appears to have only one dimension, its length, but as one approaches the hose, one discovers that it contains a second dimension, its circumference. Thus, an ant crawling inside it would move in two dimensions.


Quantum field theory

The application of quantum mechanics to physical objects such as the
electromagnetic field An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
, which are extended in space and time, is known as
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
. In
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
, quantum field theories form the basis for our understanding of elementary particles, which are modeled as excitations in the fundamental fields. Quantum field theories are also used throughout condensed matter physics to model particle-like objects called
quasiparticle In condensed matter physics, a quasiparticle is a concept used to describe a collective behavior of a group of particles that can be treated as if they were a single particle. Formally, quasiparticles and collective excitations are closely relate ...
s. In the AdS/CFT correspondence, one considers, in addition to a theory of quantum gravity, a certain kind of quantum field theory called a
conformal field theory A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometime ...
. This is a particularly
symmetric Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
and mathematically well-behaved type of quantum field theory. Such theories are often studied in the context of string theory, where they are associated with the
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
swept out by a string propagating through spacetime, and in
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
, where they model systems at a thermodynamic critical point.


Overview of the correspondence


Geometry of anti-de Sitter space

In the AdS/CFT correspondence, one considers string theory or M-theory on an anti-de Sitter background. This means that the geometry of spacetime is described in terms of a certain
vacuum solution In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or n ...
of
Einstein's equation In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Albert Einstein in 1915 in th ...
called
anti-de Sitter space In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a symmetric_space, maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are na ...
. In very elementary terms, anti-de Sitter space is a mathematical model of spacetime in which the notion of distance between points (the
metric Metric or metrical may refer to: Measuring * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics ...
) is different from the notion of distance in ordinary
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
. It is closely related to
hyperbolic space In mathematics, hyperbolic space of dimension ''n'' is the unique simply connected, ''n''-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symme ...
, which can be viewed as a disk as illustrated on the right. This image shows a
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety ...
of a disk by triangles and squares. One can define the distance between points of this disk in such a way that all the triangles and squares are the same size and the circular outer boundary is infinitely far from any point in the interior. Now imagine a stack of hyperbolic disks where each disk represents the state of the
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
at a given time. The resulting geometric object is three-dimensional anti-de Sitter space. It looks like a solid
cylinder A cylinder () has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infinite ...
in which any
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture and engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **A ...
is a copy of the hyperbolic disk. Time runs along the vertical direction in this picture. The surface of this cylinder plays an important role in the AdS/CFT correspondence. As with the hyperbolic plane, anti-de Sitter space is curved in such a way that any point in the interior is actually infinitely far from this boundary surface. This construction describes a hypothetical universe with only two space and one time dimension, but it can be generalized to any number of dimensions. Indeed, hyperbolic space can have more than two dimensions and one can "stack up" copies of hyperbolic space to get higher-dimensional models of anti-de Sitter space.


Idea of AdS/CFT

An important feature of anti-de Sitter space is its boundary (which looks like a cylinder in the case of three-dimensional anti-de Sitter space). One property of this boundary is that, locally around any point, it looks just like
Minkowski space In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model. The model helps show how a ...
, the model of spacetime used in nongravitational physics. One can therefore consider an auxiliary theory in which "spacetime" is given by the boundary of anti-de Sitter space. This observation is the starting point for the AdS/CFT correspondence, which states that the boundary of anti-de Sitter space can be regarded as the "spacetime" for a conformal field theory. The claim is that this conformal field theory is equivalent to the gravitational theory on the bulk anti-de Sitter space in the sense that there is a "dictionary" for translating calculations in one theory into calculations in the other. Every entity in one theory has a counterpart in the other theory. For example, a single particle in the gravitational theory might correspond to some collection of particles in the boundary theory. In addition, the predictions in the two theories are quantitatively identical so that if two particles have a 40 percent chance of colliding in the gravitational theory, then the corresponding collections in the boundary theory would also have a 40 percent chance of colliding. Notice that the boundary of anti-de Sitter space has fewer dimensions than anti-de Sitter space itself. For instance, in the three-dimensional example illustrated above, the boundary is a two-dimensional surface. The AdS/CFT correspondence is often described as a "holographic duality" because this relationship between the two theories is similar to the relationship between a three-dimensional object and its image as a
hologram Holography is a technique that allows a wavefront to be recorded and later reconstructed. It is best known as a method of generating three-dimensional images, and has a wide range of other uses, including data storage, microscopy, and interf ...
. Although a hologram is two-dimensional, it encodes information about all three dimensions of the object it represents. In the same way, theories that are related by the AdS/CFT correspondence are conjectured to be ''exactly'' equivalent, despite living in different numbers of dimensions. The conformal field theory is like a hologram that captures information about the higher-dimensional quantum gravity theory.


Examples of the correspondence

Following Maldacena's insight in 1997, theorists have discovered many different realizations of the AdS/CFT correspondence. These relate various conformal field theories to compactifications of string theory and M-theory in various numbers of dimensions. The theories involved are generally not viable models of the real world, but they have certain features, such as their particle content or high degree of symmetry, which make them useful for solving problems in quantum field theory and quantum gravity. The most famous example of the AdS/CFT correspondence states that type IIB string theory on the
product space In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seemi ...
is equivalent to ''N'' = 4 supersymmetric Yang–Mills theory on the four-dimensional boundary. In this example, the spacetime on which the gravitational theory lives is effectively five-dimensional (hence the notation AdS5), and there are five additional
compact dimension In theoretical physics, compactification means changing a theory with respect to one of its space-time dimensions. Instead of having a theory with this dimension being infinite, one changes the theory so that this dimension has a finite length, an ...
s (encoded by the ''S''5 factor). In the real world, spacetime is four-dimensional, at least macroscopically, so this version of the correspondence does not provide a realistic model of gravity. Likewise, the dual theory is not a viable model of any real-world system as it assumes a large amount of
supersymmetry Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
. Nevertheless, as explained below, this boundary theory shares some features in common with
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
, the fundamental theory of the
strong force In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interactions. It confines quarks into protons, neutrons, and other hadron particles, an ...
. It describes particles similar to the
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
s of quantum chromodynamics together with certain
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s. As a result, it has found applications in
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies th ...
, particularly in the study of the
quark–gluon plasma Quark–gluon plasma (QGP or quark soup) is an interacting localized assembly of quarks and gluons at Thermodynamic equilibrium#Local and global equilibrium, thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasm ...
. Another realization of the correspondence states that M-theory on is equivalent to the so-called (2,0)-theory in six dimensions. In this example, the spacetime of the gravitational theory is effectively seven-dimensional. The existence of the (2,0)-theory that appears on one side of the duality is predicted by the classification of superconformal field theories. It is still poorly understood because it is a quantum mechanical theory without a
classical limit The classical limit or correspondence limit is the ability of a physical theory to approximate or "recover" classical mechanics when considered over special values of its parameters. The classical limit is used with physical theories that predict n ...
. Despite the inherent difficulty in studying this theory, it is considered to be an interesting object for a variety of reasons, both physical and mathematical. Yet another realization of the correspondence states that M-theory on is equivalent to the ABJM superconformal field theory in three dimensions. Here the gravitational theory has four noncompact dimensions, so this version of the correspondence provides a somewhat more realistic description of gravity.


Applications to quantum gravity


A non-perturbative formulation of string theory

In quantum field theory, one typically computes the probabilities of various physical events using the techniques of
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
. Developed by
Richard Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of t ...
and others in the first half of the twentieth century, perturbative quantum field theory uses special diagrams called
Feynman diagram In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced ...
s to organize computations. One imagines that these diagrams depict the paths of point-like particles and their interactions. Although this formalism is extremely useful for making predictions, these predictions are only possible when the strength of the interactions, the
coupling constant In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between tw ...
, is small enough to reliably describe the theory as being close to a theory without interactions. The starting point for string theory is the idea that the point-like particles of quantum field theory can also be modeled as one-dimensional objects called strings. The interaction of strings is most straightforwardly defined by generalizing the perturbation theory used in ordinary quantum field theory. At the level of Feynman diagrams, this means replacing the one-dimensional diagram representing the path of a point particle by a two-dimensional surface representing the motion of a string. Unlike in quantum field theory, string theory does not yet have a full non-perturbative definition, so many of the theoretical questions that physicists would like to answer remain out of reach. The problem of developing a non-perturbative formulation of string theory was one of the original motivations for studying the AdS/CFT correspondence. As explained above, the correspondence provides several examples of quantum field theories that are equivalent to string theory on anti-de Sitter space. One can alternatively view this correspondence as providing a ''definition'' of string theory in the special case where the gravitational field is asymptotically anti-de Sitter (that is, when the gravitational field resembles that of anti-de Sitter space at spatial infinity). Physically interesting quantities in string theory are defined in terms of quantities in the dual quantum field theory.


Black hole information paradox

In 1975,
Stephen Hawking Stephen William Hawking (8January 194214March 2018) was an English theoretical physics, theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between ...
published a calculation that suggested that
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s are not completely black but emit a dim radiation due to quantum effects near the
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive c ...
. At first, Hawking's result posed a problem for theorists because it suggested that black holes destroy information. More precisely, Hawking's calculation seemed to conflict with one of the basic
postulates of quantum mechanics The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which ...
, which states that physical systems evolve in time according to the
Schrödinger equation The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after E ...
. This property is usually referred to as
unitarity In quantum physics, unitarity is (or a unitary process has) the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom o ...
of time evolution. The apparent contradiction between Hawking's calculation and the unitarity postulate of quantum mechanics came to be known as the
black hole information paradox The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from ...
. The AdS/CFT correspondence resolves the black hole information paradox, at least to some extent, because it shows how a black hole can evolve in a manner consistent with quantum mechanics in some contexts. Indeed, one can consider black holes in the context of the AdS/CFT correspondence, and any such black hole corresponds to a configuration of particles on the boundary of anti-de Sitter space. These particles obey the usual rules of quantum mechanics and in particular evolve in a unitary fashion, so the black hole must also evolve in a unitary fashion, respecting the principles of quantum mechanics. In 2005, Hawking announced that the paradox had been settled in favor of information conservation by the AdS/CFT correspondence, and he suggested a concrete mechanism by which black holes might preserve information.


Applications to quantum field theory


Nuclear physics

One
physical system A physical system is a collection of physical objects under study. The collection differs from a set: all the objects must coexist and have some physical relationship. In other words, it is a portion of the physical universe chosen for analys ...
that has been studied using the AdS/CFT correspondence is the quark–gluon plasma, an exotic
state of matter In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and Plasma (physics), plasma. Different states are distinguished by the ways the ...
produced in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s. This state of matter arises for brief instants when heavy
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
such as
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
or
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
nuclei are collided at high energies. Such collisions cause the
quarks A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
that make up atomic nuclei to deconfine at temperatures of approximately two
trillion ''Trillion'' is a number with two distinct definitions: *1,000,000,000,000, i.e. one million 1,000,000, million, or (ten to the twelfth Exponentiation, power), as defined on the long and short scales, short scale. This is now the meaning in bot ...
kelvin The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
s, conditions similar to those present at around 10−11 seconds after the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
. The physics of the quark–gluon plasma is governed by quantum chromodynamics, but this theory is mathematically intractable in problems involving the quark–gluon plasma. In an article appearing in 2005,
Đàm Thanh Sơn Đàm Thanh Sơn (born 1969) is a Vietnamese theoretical physicist working in quantum chromodynamics, applications of string theory and many-body physics. Early life and education Born in North Vietnam, Bac Ninh. Sơn attended HUS High School ...
and his collaborators showed that the AdS/CFT correspondence could be used to understand some aspects of the quark–gluon plasma by describing it in the language of string theory. By applying the AdS/CFT correspondence, Sơn and his collaborators were able to describe the quark gluon plasma in terms of black holes in five-dimensional spacetime. The calculation showed that the ratio of two quantities associated with the quark–gluon plasma, the shear viscosity ''η'' and volume density of
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
''s'', should be approximately equal to a certain
universal constant A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that cannot be explained by a theory and therefore must be measured experimentally. It is distinct from a mathematical constant, which has a ...
: : \frac\approx\frac where ''ħ'' denotes the
reduced Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
and ''k'' is the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
. In addition, the authors conjectured that this universal constant provides a
lower bound In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is every element of . Dually, a lower bound or minorant of is defined to be an element of that is less th ...
for ''η''/''s'' in a large class of systems. In an experiment conducted at the
Relativistic Heavy Ion Collider The Relativistic Heavy Ion Collider (RHIC ) is the first and one of only two operating heavy- ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used ...
at
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratories, United States Department of Energy national laboratory located in Upton, New York, a hamlet of the Brookhaven, New York, Town of Brookhaven. It w ...
, the experimental result in one model was close to this universal constant but it was not the case in another model. Another important property of the quark–gluon plasma is that very high energy quarks moving through the plasma are stopped or "quenched" after traveling only a few
femtometre The femtometre (American spelling femtometer), symbol fm, (derived from the Danish and Norwegian word 'fifteen', ) is a unit of length in the International System of Units (SI) equal to 10−15 metres, which means a quadrillionth of one metre. ...
s. This phenomenon is characterized by a number called the jet quenching parameter, which relates the energy loss of such a quark to the squared distance traveled through the plasma. Calculations based on the AdS/CFT correspondence give the estimated value , and the experimental value of lies in the range .


Condensed matter physics

Over the decades,
experimental An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs whe ...
condensed matter Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases, that arise from electromagnetic forces between atoms and electrons. More gen ...
physicists have discovered a number of exotic states of matter, including
superconductors Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases ...
and
superfluids Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two i ...
. These states are described using the formalism of quantum field theory, but some phenomena are difficult to explain using standard field theoretic techniques. Some condensed matter theorists including
Subir Sachdev Subir Sachdev is Herchel Smith Professor of physics at Harvard University specializing in condensed matter. He was elected to the U.S. National Academy of Sciences in 2014, received the Lars Onsager Prize from the American Physical Society and ...
hope that the AdS/CFT correspondence will make it possible to describe these systems in the language of string theory and learn more about their behavior. So far some success has been achieved in using string theory methods to describe the transition of a
superfluid Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortex, vortices that continue to rotate indefinitely. Superfluidity occurs ...
to an insulator. A superfluid is a system of
electrically neutral Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other an ...
atoms Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other ...
that flows without any
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
. Such systems are often produced in the laboratory using
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
, but recently experimentalists have developed new ways of producing artificial superfluids by pouring trillions of cold atoms into a lattice of criss-crossing
lasers A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
. These atoms initially behave as a superfluid, but as experimentalists increase the intensity of the lasers, they become less mobile and then suddenly transition to an insulating state. During the transition, the atoms behave in an unusual way. For example, the atoms slow to a halt at a rate that depends on the
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
and on the Planck constant, the fundamental parameter of quantum mechanics, which does not enter into the description of the other
phases Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematica ...
. This behavior has recently been understood by considering a dual description where properties of the fluid are described in terms of a higher dimensional black hole.


Criticism

With many physicists turning towards string-based methods to solve problems in nuclear and condensed matter physics, some theorists working in these areas have expressed doubts about whether the AdS/CFT correspondence can provide the tools needed to realistically model real-world systems. In a talk at the Quark Matter conference in 2006, an American physicist, Larry McLerran pointed out that the super Yang–Mills theory that appears in the AdS/CFT correspondence differs significantly from quantum chromodynamics, making it difficult to apply these methods to nuclear physics. According to McLerran, In a letter to
Physics Today ''Physics Today'' is the membership magazine of the American Institute of Physics. First published in May 1948, it is issued on a monthly schedule, and is provided to the members of ten physics societies, including the American Physical Society. ...
,
Nobel laureate The Nobel Prizes (, ) are awarded annually by the Royal Swedish Academy of Sciences, the Swedish Academy, the Karolinska Institutet, and the Norwegian Nobel Committee to individuals and organizations who make outstanding contributions in th ...
Philip W. Anderson voiced similar concerns about applications of AdS/CFT to condensed matter physics, stating


History and development


String theory and nuclear physics

The discovery of the AdS/CFT correspondence in late 1997 was the culmination of a long history of efforts to relate string theory to nuclear physics. In fact, string theory was originally developed during the late 1960s and early 1970s as a theory of
hadron In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
s, the
subatomic particle In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a baryon, lik ...
s like the
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
and
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
that are held together by the
strong nuclear force In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interactions. It confines quarks into protons, neutrons, and other hadron particles, an ...
. The idea was that each of these particles could be viewed as a different oscillation mode of a string. In the late 1960s, experimentalists had found that hadrons fall into families called
Regge trajectories In quantum physics, Regge theory ( , ) is the study of the analytic properties of scattering as a function of angular momentum, where the angular momentum is not restricted to be an integer multiple of '' ħ'' but is allowed to take any complex val ...
with squared
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
proportional to
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
, and theorists showed that this relationship emerges naturally from the physics of a rotating relativistic string. On the other hand, attempts to model hadrons as strings faced serious problems. One problem was that string theory includes a
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
less spin-2 particle whereas no such particle appears in the physics of hadrons. Such a particle would mediate a force with the properties of gravity. In 1974, Joël Scherk and John Schwarz suggested that string theory was therefore not a theory of nuclear physics as many theorists had thought but instead a theory of quantum gravity. At the same time, it was realized that hadrons are actually made of quarks, and the string theory approach was abandoned in favor of quantum chromodynamics. In quantum chromodynamics, quarks have a kind of
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
that comes in three varieties called
colors Color (or colour in Commonwealth English; see spelling differences) is the visual perception based on the electromagnetic spectrum. Though color is not an inherent property of matter, color perception is related to an object's light absorpt ...
. In a paper from 1974,
Gerard 't Hooft Gerardus "Gerard" 't Hooft (; born July 5, 1946) is a Dutch theoretical physicist and professor at Utrecht University, the Netherlands. He shared the 1999 Nobel Prize in Physics with his thesis advisor Martinus J. G. Veltman "for elucidating t ...
studied the relationship between string theory and nuclear physics from another point of view by considering theories similar to quantum chromodynamics, where the number of colors is some arbitrary number ''N'', rather than three. In this article, 't Hooft considered a certain limit where ''N'' tends to infinity and argued that in this limit certain calculations in quantum field theory resemble calculations in string theory.


Black holes and holography

In 1975, Stephen Hawking published a calculation that suggested that black holes are not completely black but emit a dim radiation due to quantum effects near the event horizon. This work extended previous results of
Jacob Bekenstein Jacob David Bekenstein (; May 1, 1947 – August 16, 2015) was a Mexican-born American-Israeli theoretical physicist who made fundamental contributions to the foundation of black hole thermodynamics and to other aspects of the connections betwee ...
who had suggested that black holes have a well-defined entropy. At first, Hawking's result appeared to contradict one of the main postulates of quantum mechanics, namely the unitarity of time evolution. Intuitively, the unitarity postulate says that quantum mechanical systems do not destroy information as they evolve from one state to another. For this reason, the apparent contradiction came to be known as the black hole information paradox. Later, in 1993, Gerard 't Hooft wrote a speculative paper on quantum gravity in which he revisited Hawking's work on
black hole thermodynamics In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the deve ...
, concluding that the total number of
degrees of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
in a region of spacetime surrounding a black hole is proportional to the
surface area The surface area (symbol ''A'') of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the d ...
of the horizon. This idea was promoted by
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birth anniversary was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an Americ ...
and is now known as the
holographic principle The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region – such as a ...
. The holographic principle and its realization in string theory through the AdS/CFT correspondence have helped elucidate the mysteries of black holes suggested by Hawking's work and are believed to provide a resolution of the black hole information paradox. In 2004, Hawking conceded that black holes do not violate quantum mechanics, and he suggested a concrete mechanism by which they might preserve information.


Maldacena's paper

On January 1, 1998, Juan Maldacena published a landmark paper that initiated the study of AdS/CFT. According to Alexander Markovich Polyakov, " aldacena'swork opened the flood gates." The conjecture immediately excited great interest in the string theory community and was considered in a paper by Steven Gubser, Igor Klebanov and Polyakov, and another paper of
Edward Witten Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the sc ...
. These papers made Maldacena's conjecture more precise and showed that the conformal field theory appearing in the correspondence lives on the boundary of anti-de Sitter space. One special case of Maldacena's proposal says that super Yang–Mills theory, a
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, t ...
similar in some ways to quantum chromodynamics, is equivalent to string theory in five-dimensional anti-de Sitter space. This result helped clarify the earlier work of 't Hooft on the relationship between string theory and quantum chromodynamics, taking string theory back to its roots as a theory of nuclear physics. Maldacena's results also provided a concrete realization of the holographic principle with important implications for quantum gravity and black hole physics. By the year 2015, Maldacena's paper had become the most highly cited paper in
high energy physics Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the stu ...
with over 10,000 citations. These subsequent articles have provided considerable evidence that the correspondence is correct, although so far it has not been rigorously proved.


Generalizations


Three-dimensional gravity

In order to better understand the quantum aspects of gravity in our
four-dimensional Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called ''dimensions'' ...
universe, some physicists have considered a lower-dimensional
mathematical model A mathematical model is an abstract and concrete, abstract description of a concrete system using mathematics, mathematical concepts and language of mathematics, language. The process of developing a mathematical model is termed ''mathematical m ...
in which spacetime has only two spatial dimensions and one time dimension. In this setting, the mathematics describing the
gravitational field In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. A gravitational field is used to explain gravitational phenomena, such as ...
simplifies drastically, and one can study quantum gravity using familiar methods from quantum field theory, eliminating the need for string theory or other more radical approaches to quantum gravity in four dimensions. Beginning with the work of J. David Brown and Marc Henneaux in 1986, physicists have noticed that quantum gravity in a three-dimensional spacetime is closely related to two-dimensional conformal field theory. In 1995, Henneaux and his coworkers explored this relationship in more detail, suggesting that three-dimensional gravity in anti-de Sitter space is equivalent to the conformal field theory known as
Liouville field theory In physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of th ...
. Another conjecture formulated by Edward Witten states that three-dimensional gravity in anti-de Sitter space is equivalent to a conformal field theory with
monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group; it has order :    : = 2463205976112133171923293 ...
symmetry. These conjectures provide examples of the AdS/CFT correspondence that do not require the full apparatus of string or M-theory.


dS/CFT correspondence

Unlike our universe, which is now known to be expanding at an accelerating rate, anti-de Sitter space is neither expanding nor contracting. Instead it looks the same at all times. In more technical language, one says that anti-de Sitter space corresponds to a universe with a negative
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is a coefficient that Albert Einstein initially added to his field equations of general rel ...
, whereas the real universe has a small positive cosmological constant. Although the properties of gravity at short distances should be somewhat independent of the value of the cosmological constant, it is desirable to have a version of the AdS/CFT correspondence for positive cosmological constant. In 2001,
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
introduced a version of the duality called the dS/CFT correspondence. This duality involves a model of spacetime called
de Sitter space In mathematical physics, ''n''-dimensional de Sitter space (often denoted dS''n'') is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an ''n''-sphere (with its canonical Rie ...
with a positive cosmological constant. Such a duality is interesting from the point of view of
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
since many cosmologists believe that the very early universe was close to being de Sitter space.


Kerr/CFT correspondence

Although the AdS/CFT correspondence is often useful for studying the properties of black holes, most of the black holes considered in the context of AdS/CFT are physically unrealistic. Indeed, as explained above, most versions of the AdS/CFT correspondence involve higher-dimensional models of spacetime with unphysical supersymmetry. In 2009, Monica Guica, Thomas Hartman, Wei Song, and Andrew Strominger showed that the ideas of AdS/CFT could nevertheless be used to understand certain
astrophysical Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the ...
black holes. More precisely, their results apply to black holes that are approximated by extremal
Kerr black hole The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of gen ...
s, which have the largest possible angular momentum compatible with a given mass. They showed that such black holes have an equivalent description in terms of conformal field theory. The Kerr/CFT correspondence was later extended to black holes with lower angular momentum.


Higher spin gauge theories

The AdS/CFT correspondence is closely related to another duality conjectured by Igor Klebanov and Alexander Markovich Polyakov in 2002. This duality states that certain "higher spin gauge theories" on anti-de Sitter space are equivalent to conformal field theories with O(N) symmetry. Here the theory in the bulk is a type of gauge theory describing particles of arbitrarily high spin. It is similar to string theory, where the excited modes of vibrating strings correspond to particles with higher spin, and it may help to better understand the string theoretic versions of AdS/CFT and possibly even prove the correspondence. In 2010, Simone Giombi and Xi Yin obtained further evidence for this duality by computing quantities called three-point functions.


See also

* Algebraic holography * Ambient construction *
Randall–Sundrum model In physics, Randall–Sundrum models (RS) (also called 5-dimensional warped geometry theory) are models that describe the world in terms of a warped-geometry higher-dimensional universe, or more concretely as a 5-dimensional anti-de Sitter space ...


Notes


References

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * {{DEFAULTSORT:AdS CFT correspondence Conformal field theory Quantum gravity String theory