Upper Semicontinuous
   HOME



picture info

Upper Semicontinuous
In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function f is upper (respectively, lower) semicontinuous at a point x_0 if, roughly speaking, the function values for arguments near x_0 are not much higher (respectively, lower) than f\left(x_0\right). Briefly, a function on a domain X is lower semi-continuous if its epigraph \ is closed in X\times\R, and upper semi-continuous if -f is lower semi-continuous. A function is continuous if and only if it is both upper and lower semicontinuous. If we take a continuous function and increase its value at a certain point x_0 to f\left(x_0\right) + c for some c>0, then the result is upper semicontinuous; if we decrease its value to f\left(x_0\right) - c then the result is lower semicontinuous. The notion of upper and lower semicontinuous function was first introduced and studied by René Baire in his thesis in 1899. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Set-valued Function
A set-valued function, also called a correspondence or set-valued relation, is a mathematical function that maps elements from one set, the domain of the function, to subsets of another set. Set-valued functions are used in a variety of mathematical fields, including optimization, control theory and game theory. Set-valued functions are also known as multivalued functions in some references, but this article and the article Multivalued function follow the authors who make a distinction. Distinction from multivalued functions Although other authors may distinguish them differently (or not at all), Wriggers and Panatiotopoulos (2014) distinguish multivalued functions from set-valued functions (which they called ''set-valued relations'') by the fact that multivalued functions only take multiple values at finitely (or denumerably) many points, and otherwise behave like a function. Geometrically, this means that the graph of a multivalued function is necessarily a line of z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Open (topology)
In mathematics, an open set is a generalization of an open interval in the real line. In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point in it, contains all points of the metric space that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, an open set is a member of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or ''no'' subset can be open except the space itself and the empty set (the indiscrete topology). In pra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE