Uncountability
In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers. Characterizations There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold: * There is no injective function (hence no bijection) from ''X'' to the set of natural numbers. * ''X'' is nonempty and for every ω-sequence of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no surjective function from the natural numbers to ''X''. * The cardinality of ''X'' is neither finite nor equal to \aleph_0 ( aleph-null, the cardinality of the natural numbers). * The set ''X'' has cardinality strictly greater than \aleph_0. The first three ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cantor's Diagonal Argument
In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers. English translation: Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began. The diagonal argument was not Cantor's first proof of the uncountability of the real numbers, which appeared in 1874. However, it demonstrates a general technique that has since been used in a wide range of proofs, including the first of Gödel's incompleteness theorems and Turing's answer to the '' Entscheidungsproblem''. Diagonalization arguments are often also the source of contradictions like Russell's paradox and Richard' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinality Of The Continuum
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mathbb R, . The real numbers \mathbb R are more numerous than the natural numbers \mathbb N. Moreover, \mathbb R has the same number of elements as the power set of \mathbb N. Symbolically, if the cardinality of \mathbb N is denoted as \aleph_0, the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities. The inequality was later stated more simply in his diagonal argument in 1891. Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers ''a'' \mathfrak c . Alternative explanation for 𝔠 = 2&al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted , A, , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A may alternatively be denoted by n(A), , \operatorname(A), or \#A. History A crude sense of cardinality, an awareness that groups of things or events compare with other ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Countable Set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limit (mathematics), limits, continuous function, continuity and derivatives. The set of real numbers is mathematical notation, denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers subset, include t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuum Hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to the following equation in aleph numbers: 2^=\aleph_1, or even shorter with beth numbers: \beth_1 = \aleph_1. The continuum hypothesis was advanced by Georg Cantor in 1878, and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being consistent if and only if ZFC is consistent. This independence was proved in 1963 by Paul Cohen, complementing earlier work by Kurt Gödel in 1940. The name of the hypothesis comes from the term '' the continuum'' for the real numbers. History Cantor believed the continuum hypothes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hausdorff Dimension
In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was first introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line segment is 1, of a square is 2, and of a cube is 3. That is, for sets of points that define a smooth shape or a shape that has a small number of corners—the shapes of traditional geometry and science—the Hausdorff dimension is an integer agreeing with the usual sense of dimension, also known as the topological dimension. However, formulas have also been developed that allow calculation of the dimension of other less simple objects, where, solely on the basis of their properties of scaling and self-similarity, one is led to the conclusion that particular objects—including fractals—have non-integer Hausdorff dimensions. Because of the significant technical advances made by Abram Samoilovitch Besicovitch allowing computatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Beth Two
In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written \beth_0,\ \beth_1,\ \beth_2,\ \beth_3,\ \dots, where \beth is the second Hebrew letter ( beth). The beth numbers are related to the aleph numbers (\aleph_0,\ \aleph_1,\ \dots), but unless the generalized continuum hypothesis is true, there are numbers indexed by \aleph that are not indexed by \beth. Definition Beth numbers are defined by transfinite recursion: * \beth_0=\aleph_0, * \beth_=2^, * \beth_=\sup\, where \alpha is an ordinal and \lambda is a limit ordinal. The cardinal \beth_0=\aleph_0 is the cardinality of any countably infinite set such as the set \mathbb of natural numbers, so that \beth_0=, \mathbb, . Let \alpha be an ordinal, and A_\alpha be a set with cardinality \beth_\alpha=, A_\alpha, . Then, *\mathcal(A_\alpha) denotes the power set of A_\alpha (i.e., the set of all subsets of A_\al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega that is greater than every natural number, along with ordinal numbers \omega + 1, \omega + 2, etc., which are even greater than \omega. A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fractal
In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar. Fractal geometry lies within the mathematical branch of measure theory. One way that fractals are different from finite geometric figures is how they scale. Doubling the edge lengths of a filled polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the conventional dimension of the filled polygon). Likewise, if the radius of a filled s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |