HOME

TheInfoList



OR:

In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar. Fractal geometry lies within the mathematical branch of measure theory. One way that fractals are different from finite geometric figures is how they
scale Scale or scales may refer to: Mathematics * Scale (descriptive set theory), an object defined on a set of points * Scale (ratio), the ratio of a linear dimension of a model to the corresponding dimension of the original * Scale factor, a number ...
. Doubling the edge lengths of a filled polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the conventional dimension of the filled polygon). Likewise, if the
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
of a filled sphere is doubled, its
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
scales by eight, which is two (the ratio of the new to the old radius) to the power of three (the conventional dimension of the filled sphere). However, if a fractal's one-dimensional lengths are all doubled, the spatial content of the fractal scales by a power that is not necessarily an
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
and is in general greater than its conventional dimension. This power is called the fractal dimension of the geometric object, to distinguish it from the conventional dimension (which is formally called the topological dimension). Analytically, many fractals are nowhere differentiable. An infinite fractal curve can be conceived of as winding through space differently from an ordinary line – although it is still topologically 1-dimensional, its fractal dimension indicates that it locally fills space more efficiently than an ordinary line. Starting in the 17th century with notions of
recursion Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematic ...
, fractals have moved through increasingly rigorous mathematical treatment to the study of continuous but not differentiable functions in the 19th century by the seminal work of Bernard Bolzano, Bernhard Riemann, and Karl Weierstrass, and on to the coining of the word '' fractal'' in the 20th century with a subsequent burgeoning of interest in fractals and computer-based modelling in the 20th century. There is some disagreement among mathematicians about how the concept of a fractal should be formally defined. Mandelbrot himself summarized it as "beautiful, damn hard, increasingly useful. That's fractals." More formally, in 1982 Mandelbrot defined ''fractal'' as follows: "A fractal is by definition a set for which the
Hausdorff–Besicovitch dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was first introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a ...
strictly exceeds the topological dimension." Later, seeing this as too restrictive, he simplified and expanded the definition to this: "A fractal is a rough or fragmented
geometric shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie ...
that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole." Still later, Mandelbrot proposed "to use ''fractal'' without a pedantic definition, to use '' fractal dimension'' as a generic term applicable to ''all'' the variants". The consensus among mathematicians is that theoretical fractals are infinitely self-similar
iterated Iteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. ...
and detailed mathematical constructs, of which many examples have been formulated and studied. Fractals are not limited to geometric patterns, but can also describe processes in time. Fractal patterns with various degrees of self-similarity have been rendered or studied in visual, physical, and aural media and found in
nature Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans ar ...
,
technology Technology is the application of knowledge to reach practical goals in a specifiable and reproducible way. The word ''technology'' may also mean the product of such an endeavor. The use of technology is widely prevalent in medicine, scie ...
, art,
architecture Architecture is the art and technique of designing and building, as distinguished from the skills associated with construction. It is both the process and the product of sketching, conceiving, planning, designing, and constructing buildings ...
Ostwald, Michael J., and Vaughan, Josephine (2016) ''
The Fractal Dimension of Architecture ''The Fractal Dimension of Architecture'' is a book that applies the mathematical concept of fractal dimension to the analysis of the architecture of buildings. It was written by Michael J. Ostwald and Josephine Vaughan, both of whom are architec ...
''. Birhauser, Basel. .
and law. Fractals are of particular relevance in the field of chaos theory because they show up in the geometric depictions of most chaotic processes (typically either as attractors or as boundaries between basins of attraction).


Etymology

The term "fractal" was coined by the mathematician Benoît Mandelbrot in 1975. Mandelbrot based it on the Latin , meaning "broken" or "fractured", and used it to extend the concept of theoretical fractional dimensions to geometric
patterns in nature Patterns in nature are visible regularities of form found in the natural world. These patterns recur in different contexts and can sometimes be modelled mathematically. Natural patterns include symmetries, trees, spirals, meanders, wave ...
.


Introduction

The word "fractal" often has different connotations for the lay public as opposed to mathematicians, where the public is more likely to be familiar with fractal art than the mathematical concept. The mathematical concept is difficult to define formally, even for mathematicians, but key features can be understood with a little mathematical background. The feature of "self-similarity", for instance, is easily understood by analogy to zooming in with a lens or other device that zooms in on digital images to uncover finer, previously invisible, new structure. If this is done on fractals, however, no new detail appears; nothing changes and the same pattern repeats over and over, or for some fractals, nearly the same pattern reappears over and over. Self-similarity itself is not necessarily counter-intuitive (e.g., people have pondered self-similarity informally such as in the infinite regress in parallel mirrors or the homunculus, the little man inside the head of the little man inside the head ...). The difference for fractals is that the pattern reproduced must be detailed. This idea of being detailed relates to another feature that can be understood without much mathematical background: Having a fractal dimension greater than its topological dimension, for instance, refers to how a fractal scales compared to how geometric shapes are usually perceived. A straight line, for instance, is conventionally understood to be one-dimensional; if such a figure is rep-tiled into pieces each 1/3 the length of the original, then there are always three equal pieces. A solid square is understood to be two-dimensional; if such a figure is rep-tiled into pieces each scaled down by a factor of 1/3 in both dimensions, there are a total of 32 = 9 pieces. We see that for ordinary self-similar objects, being n-dimensional means that when it is rep-tiled into pieces each scaled down by a scale-factor of 1/''r'', there are a total of ''r''''n'' pieces. Now, consider the Koch curve. It can be rep-tiled into four sub-copies, each scaled down by a scale-factor of 1/3. So, strictly by analogy, we can consider the "dimension" of the Koch curve as being the unique real number ''D'' that satisfies 3''D'' = 4. This number is what mathematicians call the ''fractal dimension'' of the Koch curve; it is certainly ''not'' what is conventionally perceived as the dimension of a curve (this number is not even an integer!). In general, a key property of fractals is that the fractal dimension differs from the ''conventionally understood'' dimension (formally called the topological dimension). This also leads to understanding a third feature, that fractals as mathematical equations are "nowhere differentiable". In a concrete sense, this means fractals cannot be measured in traditional ways. To elaborate, in trying to find the length of a wavy non-fractal curve, one could find straight segments of some measuring tool small enough to lay end to end over the waves, where the pieces could get small enough to be considered to conform to the curve in the normal manner of measuring with a tape measure. But in measuring an infinitely "wiggly" fractal curve such as the Koch snowflake, one would never find a small enough straight segment to conform to the curve, because the jagged pattern would always re-appear, at arbitrarily small scales, essentially pulling a little more of the tape measure into the total length measured each time one attempted to fit it tighter and tighter to the curve. The result is that one must need infinite tape to perfectly cover the entire curve, i.e. the snowflake has an infinite perimeter.


History

The history of fractals traces a path from chiefly theoretical studies to modern applications in
computer graphics Computer graphics deals with generating images with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, cell phone and computer displays, and many specialized applications. A great deal ...
, with several notable people contributing canonical fractal forms along the way. A common theme in traditional African architecture is the use of fractal scaling, whereby small parts of the structure tend to look similar to larger parts, such as a circular village made of circular houses. According to Pickover, the mathematics behind fractals began to take shape in the 17th century when the mathematician and philosopher
Gottfried Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mat ...
pondered recursive self-similarity (although he made the mistake of thinking that only the straight line was self-similar in this sense). In his writings, Leibniz used the term "fractional exponents", but lamented that "Geometry" did not yet know of them. Indeed, according to various historical accounts, after that point few mathematicians tackled the issues and the work of those who did remained obscured largely because of resistance to such unfamiliar emerging concepts, which were sometimes referred to as mathematical "monsters". Thus, it was not until two centuries had passed that on July 18, 1872 Karl Weierstrass presented the first definition of a function with a graph that would today be considered a fractal, having the non-
intuitive Intuition is the ability to acquire knowledge without recourse to conscious reasoning. Different fields use the word "intuition" in very different ways, including but not limited to: direct access to unconscious knowledge; unconscious cognitio ...
property of being everywhere continuous but nowhere differentiable at the Royal Prussian Academy of Sciences. In addition, the quotient difference becomes arbitrarily large as the summation index increases. Not long after that, in 1883, Georg Cantor, who attended lectures by Weierstrass, published examples of
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
s of the real line known as Cantor sets, which had unusual properties and are now recognized as fractals. Also in the last part of that century, Felix Klein and Henri Poincaré introduced a category of fractal that has come to be called "self-inverse" fractals. One of the next milestones came in 1904, when
Helge von Koch Niels Fabian Helge von Koch (25 January 1870 – 11 March 1924) was a Swedish mathematician who gave his name to the famous fractal known as the Koch snowflake, one of the earliest fractal curves to be described. He was born to Swedish nobility. ...
, extending ideas of Poincaré and dissatisfied with Weierstrass's abstract and analytic definition, gave a more geometric definition including hand-drawn images of a similar function, which is now called the Koch snowflake. Another milestone came a decade later in 1915, when Wacław Sierpiński constructed his famous
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colli ...
then, one year later, his carpet. By 1918, two French mathematicians, Pierre Fatou and Gaston Julia, though working independently, arrived essentially simultaneously at results describing what is now seen as fractal behaviour associated with mapping complex numbers and iterative functions and leading to further ideas about attractors and repellors (i.e., points that attract or repel other points), which have become very important in the study of fractals. Very shortly after that work was submitted, by March 1918, Felix Hausdorff expanded the definition of "dimension", significantly for the evolution of the definition of fractals, to allow for sets to have non-integer dimensions. The idea of self-similar curves was taken further by Paul Lévy, who, in his 1938 paper ''Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole'', described a new fractal curve, the Lévy C curve. Different researchers have postulated that without the aid of modern computer graphics, early investigators were limited to what they could depict in manual drawings, so lacked the means to visualize the beauty and appreciate some of the implications of many of the patterns they had discovered (the Julia set, for instance, could only be visualized through a few iterations as very simple drawings). That changed, however, in the 1960s, when Benoit Mandelbrot started writing about self-similarity in papers such as '' How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension'', which built on earlier work by Lewis Fry Richardson. In 1975 Mandelbrot solidified hundreds of years of thought and mathematical development in coining the word "fractal" and illustrated his mathematical definition with striking computer-constructed visualizations. These images, such as of his canonical Mandelbrot set, captured the popular imagination; many of them were based on recursion, leading to the popular meaning of the term "fractal". In 1980,
Loren Carpenter Loren C. Carpenter (born February 7, 1947) is a computer graphics researcher and developer. Biography He was a co-founder and chief scientist of Pixar Animation Studios. He is the co-inventor of the Reyes rendering algorithm and is one of the ...
gave a presentation at the SIGGRAPH where he introduced his software for generating and rendering fractally generated landscapes.


Definition and characteristics

One often cited description that Mandelbrot published to describe geometric fractals is "a rough or fragmented
geometric shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie ...
that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole"; this is generally helpful but limited. Authors disagree on the exact definition of ''fractal'', but most usually elaborate on the basic ideas of self-similarity and the unusual relationship fractals have with the space they are embedded in. One point agreed on is that fractal patterns are characterized by fractal dimensions, but whereas these numbers quantify
complexity Complexity characterises the behaviour of a system or model whose components interact in multiple ways and follow local rules, leading to nonlinearity, randomness, collective dynamics, hierarchy, and emergence. The term is generally used to c ...
(i.e., changing detail with changing scale), they neither uniquely describe nor specify details of how to construct particular fractal patterns. In 1975 when Mandelbrot coined the word "fractal", he did so to denote an object whose
Hausdorff–Besicovitch dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was first introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a ...
is greater than its topological dimension. However, this requirement is not met by space-filling curves such as the Hilbert curve. Because of the trouble involved in finding one definition for fractals, some argue that fractals should not be strictly defined at all. According to Falconer, fractals should be only generally characterized by a gestalt of the following features; * Self-similarity, which may include: :* Exact self-similarity: identical at all scales, such as the Koch snowflake :* Quasi self-similarity: approximates the same pattern at different scales; may contain small copies of the entire fractal in distorted and degenerate forms; e.g., the Mandelbrot set's satellites are approximations of the entire set, but not exact copies. :* Statistical self-similarity: repeats a pattern stochastically so numerical or statistical measures are preserved across scales; e.g., randomly generated fractals like the well-known example of the
coastline of Britain The coastline of the United Kingdom is formed by a variety of natural features including islands, bays, headlands and peninsulas. It consists of the coastline of the island of Great Britain and the north-east coast of the island of Ireland, ...
for which one would not expect to find a segment scaled and repeated as neatly as the repeated unit that defines fractals like the Koch snowflake. :* Qualitative self-similarity: as in a time series :* Multifractal scaling: characterized by more than one fractal dimension or scaling rule * Fine or detailed structure at arbitrarily small scales. A consequence of this structure is fractals may have
emergent properties In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergen ...
(related to the next criterion in this list). * Irregularity locally and globally that cannot easily be described in the language of traditional
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
other than as the limit of a recursively defined sequence of stages. For images of fractal patterns, this has been expressed by phrases such as "smoothly piling up surfaces" and "swirls upon swirls";''see Common techniques for generating fractals''. As a group, these criteria form guidelines for excluding certain cases, such as those that may be self-similar without having other typically fractal features. A straight line, for instance, is self-similar but not fractal because it lacks detail, and is easily described in Euclidean language without a need for recursion.


Common techniques for generating fractals

Images of fractals can be created by fractal generating programs. Because of the butterfly effect, a small change in a single variable can have an unpredictable outcome. * ''
Iterated function systems In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry. They were introduced in 1981. IFS fractals, ...
(IFS)'' – use fixed geometric replacement rules; may be stochastic or deterministic; e.g., Koch snowflake, Cantor set, Haferman carpet, Sierpinski carpet, Sierpinski gasket, Peano curve, Harter-Heighway dragon curve, T-square, Menger sponge * '' Strange attractors'' – use iterations of a map or solutions of a system of initial-value differential or difference equations that exhibit chaos (e.g., see multifractal image, or the logistic map) * ''
L-system An L-system or Lindenmayer system is a parallel rewriting system and a type of formal grammar. An L-system consists of an alphabet of symbols that can be used to make strings, a collection of production rules that expand each symbol into som ...
s'' – use string rewriting; may resemble branching patterns, such as in plants, biological cells (e.g., neurons and immune system cells), blood vessels, pulmonary structure, etc. or
turtle graphics In computer graphics, turtle graphics are vector graphics using a relative cursor (the " turtle") upon a Cartesian plane (x and y axis). Turtle graphics is a key feature of the Logo programming language. Overview The turtle has three attri ...
patterns such as space-filling curves and tilings * ''Escape-time fractals'' – use a formula or recurrence relation at each point in a space (such as the complex plane); usually quasi-self-similar; also known as "orbit" fractals; e.g., the Mandelbrot set, Julia set, Burning Ship fractal, Nova fractal and Lyapunov fractal. The 2d vector fields that are generated by one or two iterations of escape-time formulae also give rise to a fractal form when points (or pixel data) are passed through this field repeatedly. * ''Random fractals'' – use stochastic rules; e.g., Lévy flight, percolation clusters, self avoiding walks, fractal landscapes, trajectories of Brownian motion and the Brownian tree (i.e., dendritic fractals generated by modeling
diffusion-limited aggregation Diffusion-limited aggregation (DLA) is the process whereby particles undergoing a random walk due to Brownian motion cluster together to form aggregates of such particles. This theory, proposed by T.A. Witten Jr. and L.M. Sander in 1981, is a ...
or reaction-limited aggregation clusters). *'' Finite subdivision rules'' – use a recursive topological algorithm for refining tilingsJ. W. Cannon, W. J. Floyd, W. R. Parry. ''Finite subdivision rules''. Conformal Geometry and Dynamics, vol. 5 (2001), pp. 153–196. and they are similar to the process of cell division.J. W. Cannon, W. Floyd and W. Parry
''Crystal growth, biological cell growth and geometry''.
Pattern Formation in Biology, Vision and Dynamics, pp. 65–82. World Scientific, 2000. , .
The iterative processes used in creating the Cantor set and the Sierpinski carpet are examples of finite subdivision rules, as is barycentric subdivision.


Applications


Simulated fractals

Fractal patterns have been modeled extensively, albeit within a range of scales rather than infinitely, owing to the practical limits of physical time and space. Models may simulate theoretical fractals or natural phenomena with fractal features. The outputs of the modelling process may be highly artistic renderings, outputs for investigation, or benchmarks for fractal analysis. Some specific applications of fractals to technology are listed elsewhere. Images and other outputs of modelling are normally referred to as being "fractals" even if they do not have strictly fractal characteristics, such as when it is possible to zoom into a region of the fractal image that does not exhibit any fractal properties. Also, these may include calculation or display artifacts which are not characteristics of true fractals. Modeled fractals may be sounds, digital images, electrochemical patterns,
circadian rhythm A circadian rhythm (), or circadian cycle, is a natural, internal process that regulates the sleep–wake cycle and repeats roughly every 24 hours. It can refer to any process that originates within an organism (i.e., endogenous) and responds to ...
s, etc. Fractal patterns have been reconstructed in physical 3-dimensional space and virtually, often called " in silico" modeling. Models of fractals are generally created using fractal-generating software that implements techniques such as those outlined above. As one illustration, trees, ferns, cells of the nervous system, blood and lung vasculature, and other branching
patterns in nature Patterns in nature are visible regularities of form found in the natural world. These patterns recur in different contexts and can sometimes be modelled mathematically. Natural patterns include symmetries, trees, spirals, meanders, wave ...
can be modeled on a computer by using recursive
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
s and L-systems techniques. The recursive nature of some patterns is obvious in certain examples—a branch from a tree or a
frond A frond is a large, divided leaf. In both common usage and botanical nomenclature, the leaves of ferns are referred to as fronds and some botanists restrict the term to this group. Other botanists allow the term frond to also apply to the lar ...
from a
fern A fern (Polypodiopsida or Polypodiophyta ) is a member of a group of vascular plants (plants with xylem and phloem) that reproduce via spores and have neither seeds nor flowers. The polypodiophytes include all living pteridophytes except ...
is a miniature replica of the whole: not identical, but similar in nature. Similarly, random fractals have been used to describe/create many highly irregular real-world objects. A limitation of modeling fractals is that resemblance of a fractal model to a natural phenomenon does not prove that the phenomenon being modeled is formed by a process similar to the modeling algorithms.


Natural phenomena with fractal features

Approximate fractals found in nature display self-similarity over extended, but finite, scale ranges. The connection between fractals and leaves, for instance, is currently being used to determine how much carbon is contained in trees. Phenomena known to have fractal features include: * Actin cytoskeleton * Algae * Animal coloration patterns *
Blood vessel Blood vessels are the structures of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away from ...
s and
pulmonary vessels The pulmonary circulation is a division of the circulatory system in all vertebrates. The circuit begins with deoxygenated blood returned from the body to the right atrium of the heart where it is pumped out from the right ventricle to the lungs. ...
* Brownian motion (generated by a one-dimensional Wiener process). * Clouds and rainfall areas * Coastlines *
Craters Crater may refer to: Landforms * Impact crater, a depression caused by two celestial bodies impacting each other, such as a meteorite hitting a planet * Explosion crater, a hole formed in the ground produced by an explosion near or below the surf ...
* Crystals * DNA * Dust grains * Earthquakes * Fault lines * Geometrical optics * Heart rates * Heart sounds *
Lake A lake is an area filled with water, localized in a basin, surrounded by land, and distinct from any river or other outlet that serves to feed or drain the lake. Lakes lie on land and are not part of the ocean, although, like the much lar ...
shorelines and areas *
Lightning Lightning is a naturally occurring electrostatic discharge during which two electrically charged regions, both in the atmosphere or with one on the ground, temporarily neutralize themselves, causing the instantaneous release of an average ...
bolts * Mountain goat horns * Polymers * Percolation * Mountain ranges * Ocean waves * Pineapple * Proteins * Psychedelic Experience * Purkinje cells * Rings of Saturn * River networks *
Romanesco broccoli Romanesco broccoli (also known as Roman cauliflower, Broccolo Romanesco, Romanesque cauliflower, Romanesco or broccoflower) is an edible flower bud of the species ''Brassica oleracea''. It is chartreuse in color, and has a form naturally approxi ...
* Snowflakes * Soil pores *Surfaces in turbulent flows * Trees File:Frost patterns 2.jpg, Frost crystals occurring naturally on cold glass form fractal patterns File:Optical Billiard Spheres dsweet.jpeg, Fractal basin boundary in a geometrical optical system File:Glue1 800x600.jpg, A fractal is formed when pulling apart two glue-covered acrylic sheets File:Square1.jpg, High-voltage breakdown within a block of acrylic glass creates a fractal Lichtenberg figure File:Romanesco broccoli (Brassica oleracea).jpg,
Romanesco broccoli Romanesco broccoli (also known as Roman cauliflower, Broccolo Romanesco, Romanesque cauliflower, Romanesco or broccoflower) is an edible flower bud of the species ''Brassica oleracea''. It is chartreuse in color, and has a form naturally approxi ...
, showing self-similar form approximating a natural fractal File:Fractal defrosting patterns on Mars.jpg, Fractal defrosting patterns, polar Mars. The patterns are formed by sublimation of frozen CO2. Width of image is about a kilometer. File:Brefeldia maxima plasmodium on wood.jpg, Slime mold ''
Brefeldia maxima ''Brefeldia maxima'' is a species of non-parasitic plasmodial slime mold, and a member of the class Myxogastria, Myxomycetes. It is common name, commonly known as the tapioca slime mold because of its peculiar pure white, tapioca pudding-like app ...
'' growing fractally on wood


Fractals in cell biology

Fractals often appear in the realm of living organisms where they arise through branching processes and other complex pattern formation. Ian Wong and co-workers have shown that migrating cells can form fractals by clustering and branching. Nerve cells function through processes at the cell surface, with phenomena that are enhanced by largely increasing the surface to volume ratio. As a consequence nerve cells often are found to form into fractal patterns. These processes are crucial in cell
physiology Physiology (; ) is the scientific study of functions and mechanisms in a living system. As a sub-discipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out the chemic ...
and different pathologies. Multiple subcellular structures also are found to assemble into fractals.
Diego Krapf Diego Krapf (born November 21, 1973) is an Argentine-Israeli-American physicist known for his work on anomalous diffusion and ergodicity breaking. He currently is a professor in the Department of Electrical and Computer Engineering at Colorado St ...
has shown that through branching processes the
actin Actin is a protein family, family of Globular protein, globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in myofibril, muscle fibrils. It is found in essentially all Eukaryote, eukaryotic cel ...
filaments in human cells assemble into fractal patterns. Similarly Matthias Weiss showed that the endoplasmic reticulum displays fractal features. The current understanding is that fractals are ubiquitous in cell biology, from
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respon ...
s, to
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' t ...
s, to whole cells.


In creative works

Since 1999 numerous scientific groups have performed fractal analysis on over 50 paintings created by
Jackson Pollock Paul Jackson Pollock (; January 28, 1912August 11, 1956) was an American painter and a major figure in the abstract expressionist movement. He was widely noticed for his " drip technique" of pouring or splashing liquid household paint onto a ho ...
by pouring paint directly onto horizontal canvasses. Recently, fractal analysis has been used to achieve a 93% success rate in distinguishing real from imitation Pollocks. Cognitive neuroscientists have shown that Pollock's fractals induce the same stress-reduction in observers as computer-generated fractals and Nature's fractals. Decalcomania, a technique used by artists such as Max Ernst, can produce fractal-like patterns. It involves pressing paint between two surfaces and pulling them apart. Cyberneticist
Ron Eglash Ron Eglash (born December 25, 1958 in Chestertown, Maryland) is an American who works in cybernetics, professor in the School of Information at the University of Michigan with a secondary appointment in the School of Design, and an author widely ...
has suggested that fractal geometry and mathematics are prevalent in African art, games, divination, trade, and architecture. Circular houses appear in circles of circles, rectangular houses in rectangles of rectangles, and so on. Such scaling patterns can also be found in African textiles, sculpture, and even cornrow hairstyles. Hokky Situngkir also suggested the similar properties in Indonesian traditional art,
batik Batik is an National costume of Indonesia, Indonesian technique of Resist dyeing, wax-resist dyeing applied to the whole cloth. This technique originated from the island of Java, Indonesia. Batik is made either by drawing dots and lines of ...
, and ornaments found in traditional houses. Ethnomathematician Ron Eglash has discussed the planned layout of
Benin city Benin City is the capital and largest city of Edo State, Nigeria. It is the fourth-largest city in Nigeria according to the 2006 census, after Lagos, Kano, and Ibadan, with a population estimate of about 3,500,000 as of 2022. It is situated ...
using fractals as the basis, not only in the city itself and the villages but even in the rooms of houses. He commented that "When Europeans first came to Africa, they considered the architecture very disorganised and thus primitive. It never occurred to them that the Africans might have been using a form of mathematics that they hadn’t even discovered yet." In a 1996 interview with Michael Silverblatt, David Foster Wallace admitted that the structure of the first draft of '' Infinite Jest'' he gave to his editor Michael Pietsch was inspired by fractals, specifically the Sierpinski triangle (a.k.a. Sierpinski gasket), but that the edited novel is "more like a lopsided Sierpinsky Gasket". Some works by the Dutch artist M. C. Escher, such as Circle Limit III, contain shapes repeated to infinity that become smaller and smaller as they get near to the edges, in a pattern that would always look the same if zoomed in. File:Animated fractal mountain.gif, A fractal that models the surface of a mountain (animation) File:FRACTAL-3d-FLOWER.jpg, 3D recursive image File:Fractal-BUTTERFLY.jpg, Recursive fractal butterfly image File:Apophysis-100303-104.jpg, A fractal flame


Physiological responses

Humans appear to be especially well-adapted to processing fractal patterns with D values between 1.3 and 1.5. When humans view fractal patterns with D values between 1.3 and 1.5, this tends to reduce physiological stress.


Applications in technology

*
Fractal antenna A fractal antenna is an antenna that uses a fractal, self-similar design to maximize the effective length, or increase the perimeter (on inside sections or the outer structure), of material that can receive or transmit electromagnetic radiation ...
s *Fractal transistor * Fractal heat exchangers * Digital imaging * Architecture * Urban growth * Classification of histopathology slides *
Fractal landscape A fractal landscape is a surface that is generated using a stochastic algorithm designed to produce fractal behavior that mimics the appearance of natural terrain. In other words, the result of the procedure is not a deterministic fractal surface, ...
or
Coast The coast, also known as the coastline or seashore, is defined as the area where land meets the ocean, or as a line that forms the boundary between the land and the coastline. The Earth has around of coastline. Coasts are important zones in n ...
line
complexity Complexity characterises the behaviour of a system or model whose components interact in multiple ways and follow local rules, leading to nonlinearity, randomness, collective dynamics, hierarchy, and emergence. The term is generally used to c ...
* Detecting 'life as we don't know it' by fractal analysis * Enzymes ( Michaelis-Menten kinetics) * Generation of new music * Signal and image compression * Creation of digital photographic enlargements *
Fractal in soil mechanics A fractal is an irregular geometric object with an infinite nesting of structure at all scales. It is mainly applicable in soil chromatography and soil micromorphology (Anderson, 1997). Internal structure, pore size distribution and pore geometry ...
* Computer and video game design *
Computer Graphics Computer graphics deals with generating images with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, cell phone and computer displays, and many specialized applications. A great deal ...
* Organic environments * Procedural generation *
Fractography Fractography is the study of the fracture surfaces of materials. Fractographic methods are routinely used to determine the cause of failure in engineering structures, especially in product failure and the practice of forensic engineering or fai ...
and
fracture mechanics Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics ...
* Small angle scattering theory of fractally rough systems * T-shirts and other fashion * Generation of patterns for camouflage, such as MARPAT * Digital sundial * Technical analysis of price series * Fractals in networks * Medicine *
Neuroscience Neuroscience is the science, scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a Multidisciplinary approach, multidisciplinary science that combines physiology, an ...
* Diagnostic Imaging *
Pathology Pathology is the study of the causes and effects of disease or injury. The word ''pathology'' also refers to the study of disease in general, incorporating a wide range of biology research fields and medical practices. However, when used in ...
* Geology *
Geography Geography (from Greek: , ''geographia''. Combination of Greek words ‘Geo’ (The Earth) and ‘Graphien’ (to describe), literally "earth description") is a field of science devoted to the study of the lands, features, inhabitants, a ...
*
Archaeology Archaeology or archeology is the scientific study of human activity through the recovery and analysis of material culture. The archaeological record consists of Artifact (archaeology), artifacts, architecture, biofact (archaeology), biofacts ...
* Soil mechanics *
Seismology Seismology (; from Ancient Greek σεισμός (''seismós'') meaning "earthquake" and -λογία (''-logía'') meaning "study of") is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other ...
*
Search and rescue Search and rescue (SAR) is the search for and provision of aid to people who are in distress or imminent danger. The general field of search and rescue includes many specialty sub-fields, typically determined by the type of terrain the search ...
* Technical analysis * Morton order space filling curves for GPU cache coherency in texture mapping, rasterisation and indexing of turbulence data.


See also

* Banach fixed point theorem * Bifurcation theory * Box counting * Cymatics * Determinism *
Diamond-square algorithm The diamond-square algorithm is a method for generating heightmaps for computer graphics. It is a slightly better algorithm than the three-dimensional implementation of the midpoint displacement algorithm, which produces two-dimensional landsc ...
* Droste effect *
Feigenbaum function In the study of dynamical systems the term Feigenbaum function has been used to describe two different functions introduced by the physicist Mitchell Feigenbaum: * the solution to the Feigenbaum-Cvitanović functional equation; and * the scaling fun ...
*
Form constant A form constant is one of several geometric patterns which are recurringly observed during hypnagogia, hallucinations and altered states of consciousness. History In 1926, Heinrich Klüver systematically studied the effects of mescaline (peyote ...
* Fractal cosmology * Fractal derivative * Fractalgrid * Fractal string *
Fracton A fracton is a collective quantized vibration on a substrate with a fractal structure.. Fractons are the fractal analog of phonons. Phonons are the result of applying translational symmetry to the potential in a Schrödinger equation. Fractal s ...
*
Graftal An L-system or Lindenmayer system is a parallel rewriting system and a type of formal grammar. An L-system consists of an alphabet of symbols that can be used to make strings, a collection of production rules that expand each symbol into some ...
* Greeble * Infinite regress * Lacunarity * List of fractals by Hausdorff dimension * Mandelbulb * Mandelbox * Macrocosm and microcosm * Matryoshka doll * Menger Sponge * Multifractal system * Newton fractal * Percolation * Power law * Publications in fractal geometry * Random walk * Self-reference * Self-similarity * Systems theory * Strange loop * Turbulence * Wiener process


Notes


References


Further reading

* Barnsley, Michael F.; and Rising, Hawley; ''Fractals Everywhere''. Boston: Academic Press Professional, 1993. * Duarte, German A.; ''Fractal Narrative. About the Relationship Between Geometries and Technology and Its Impact on Narrative Spaces''. Bielefeld: Transcript, 2014. * Falconer, Kenneth; ''Techniques in Fractal Geometry''. John Wiley and Sons, 1997. * Jürgens, Hartmut; Peitgen, Heinz-Otto; and Saupe, Dietmar; ''Chaos and Fractals: New Frontiers of Science''. New York: Springer-Verlag, 1992. * Mandelbrot, Benoit B.; '' The Fractal Geometry of Nature''. New York: W. H. Freeman and Co., 1982. * Peitgen, Heinz-Otto; and Saupe, Dietmar; eds.; ''The Science of Fractal Images''. New York: Springer-Verlag, 1988. * Pickover, Clifford A.; ed.; ''Chaos and Fractals: A Computer Graphical Journey – A 10 Year Compilation of Advanced Research''. Elsevier, 1998. * Jones, Jesse; ''Fractals for the Macintosh'', Waite Group Press, Corte Madera, CA, 1993. . * Lauwerier, Hans; ''Fractals: Endlessly Repeated Geometrical Figures'', Translated by Sophia Gill-Hoffstadt, Princeton University Press, Princeton NJ, 1991. , cloth. paperback. "This book has been written for a wide audience..." Includes sample BASIC programs in an appendix. * * Wahl, Bernt; Van Roy, Peter; Larsen, Michael; and Kampman, Eric
''Exploring Fractals on the Macintosh''
Addison Wesley, 1995. * Lesmoir-Gordon, Nigel; ''The Colours of Infinity: The Beauty, The Power and the Sense of Fractals''. 2004. (The book comes with a related DVD of the
Arthur C. Clarke Sir Arthur Charles Clarke (16 December 191719 March 2008) was an English science-fiction writer, science writer, futurist, inventor, undersea explorer, and television series host. He co-wrote the screenplay for the 1968 film '' 2001: A Spac ...
documentary introduction to the fractal concept and the Mandelbrot set.) * Liu, Huajie; ''Fractal Art'', Changsha: Hunan Science and Technology Press, 1997, . * Gouyet, Jean-François; ''Physics and Fractal Structures'' (Foreword by B. Mandelbrot); Masson, 1996. , and New York: Springer-Verlag, 1996. . Out-of-print. Available in PDF version at. *


External links

*
Hunting the Hidden Dimension
PBS '' NOVA'', first aired August 24, 2011
Benoit Mandelbrot: Fractals and the Art of Roughness
, TED, February 2010
Technical Library on Fractals for controlling fluid

Equations of self-similar fractal measure based on the fractional-order calculus
��2007) {{Authority control Mathematical structures Topology Computational fields of study