Symmetric Cryptography
   HOME
*





Symmetric Cryptography
Symmetric-key algorithms are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link. The requirement that both parties have access to the secret key is one of the main drawbacks of symmetric-key encryption, in comparison to public-key encryption (also known as asymmetric-key encryption). However, symmetric-key encryption algorithms are usually better for bulk encryption. They have a smaller key size, which means less storage space and faster transmission. Due to this, asymmetric-key encryption is often used to exchange the secret key for symmetric-key encryption. Types Symmetric-key encryption can use either stream ciphers or block ciphers. * Stream ciphers encrypt the digi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Public-key Cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. In a public-key encryption system, anyone with a public key can Encryption, encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message. For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twofish
In cryptography, Twofish is a symmetric key block cipher with a block size of 128 bits and key sizes up to 256 bits. It was one of the five finalists of the Advanced Encryption Standard contest, but it was not selected for standardization. Twofish is related to the earlier block cipher Blowfish. Twofish's distinctive features are the use of pre-computed key-dependent S-boxes, and a relatively complex key schedule. One half of an n-bit key is used as the actual encryption key and the other half of the n-bit key is used to modify the encryption algorithm (key-dependent S-boxes). Twofish borrows some elements from other designs; for example, the pseudo-Hadamard transform (PHT) from the SAFER family of ciphers. Twofish has a Feistel structure like DES. Twofish also employs a Maximum Distance Separable matrix. When it was introduced in 1998, Twofish was slightly slower than Rijndael (the chosen algorithm for Advanced Encryption Standard) for 128-bit keys, but somewhat fas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Message Authentication Code
In cryptography, a message authentication code (MAC), sometimes known as a ''tag'', is a short piece of information used for authenticating a message. In other words, to confirm that the message came from the stated sender (its authenticity) and has not been changed. The MAC value protects a message's data integrity, as well as its authenticity, by allowing verifiers (who also possess the secret key) to detect any changes to the message content. Terminology The term message integrity code (MIC) is frequently substituted for the term ''MAC'', especially in communications to distinguish it from the use of the latter as '' media access control address'' (''MAC address''). However, some authors use MIC to refer to a message digest, which aims only to uniquely but opaquely identify a single message. RFC 4949 recommends avoiding the term ''message integrity code'' (MIC), and instead using '' checksum'', ''error detection code'', ''hash'', ''keyed hash'', ''message authentication code ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cryptographic Primitive
Cryptographic primitives are well-established, low-level cryptographic algorithms that are frequently used to build cryptographic protocols for computer security systems. These routines include, but are not limited to, one-way hash functions and encryption functions. Rationale When creating cryptographic systems, designers use cryptographic primitives as their most basic building blocks. Because of this, cryptographic primitives are designed to do one very specific task in a precisely defined and highly reliable fashion. Since cryptographic primitives are used as building blocks, they must be very reliable, i.e. perform according to their specification. For example, if an encryption routine claims to be only breakable with number of computer operations, and it is broken with significantly fewer than operations, then that cryptographic primitive has failed. If a cryptographic primitive is found to fail, almost every protocol that uses it becomes vulnerable. Since creating ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




International Data Encryption Algorithm
In cryptography, the International Data Encryption Algorithm (IDEA), originally called Improved Proposed Encryption Standard (IPES), is a symmetric-key block cipher designed by James Massey of ETH Zurich and Xuejia Lai and was first described in 1991. The algorithm was intended as a replacement for the Data Encryption Standard (DES). IDEA is a minor revision of an earlier cipher Proposed Encryption Standard (PES). The cipher was designed under a research contract with the Hasler Foundation, which became part of Ascom-Tech AG. The cipher was patented in a number of countries but was freely available for non-commercial use. The name "IDEA" is also a trademark. The last patents expired in 2012, and IDEA is now patent-free and thus completely free for all uses. IDEA was used in Pretty Good Privacy (PGP) v2.0 and was incorporated after the original cipher used in v1.0, BassOmatic, was found to be insecure. IDEA is an optional algorithm in the OpenPGP standard. Operation IDEA oper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SAFER
In cryptography, SAFER (Secure And Fast Encryption Routine) is the name of a family of block ciphers designed primarily by James Massey (one of the designers of IDEA) on behalf of Cylink Corporation. The early SAFER K and SAFER SK designs share the same encryption function, but differ in the number of rounds and the key schedule. More recent versions — SAFER+ and SAFER++ — were submitted as candidates to the AES process and the NESSIE project respectively. All of the algorithms in the SAFER family are unpatented and available for unrestricted use. SAFER K and SAFER SK The first SAFER cipher was SAFER K-64, published by Massey in 1993, with a 64-bit block size. The "K-64" denotes a key size of 64 bits. There was some demand for a version with a larger 128-bit key, and the following year Massey published such a variant incorporating new key schedule designed by the Singapore Ministry for Home affairs: SAFER K-128. However, both Lars Knudsen and Sean Murphy found mino ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE