Strongly Minimal Theory
   HOME





Strongly Minimal Theory
In model theory—a branch of mathematical logic—a minimal structure is an infinite one-sorted structure such that every subset of its domain that is definable with parameters is either finite or cofinite. A strongly minimal theory is a complete theory all models of which are minimal. A strongly minimal structure is a structure whose theory is strongly minimal. Thus a structure is minimal only if the parametrically definable subsets of its domain cannot be avoided, because they are already parametrically definable in the pure language of equality. Strong minimality was one of the early notions in the new field of classification theory and stability theory that was opened up by Morley's theorem on totally categorical structures. The nontrivial standard examples of strongly minimal theories are the one-sorted theories of infinite-dimensional vector spaces, and the theories ACF''p'' of algebraically closed fields of characteristic ''p''. As the example ACF''p'' shows, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Model Theory
In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mathematical logic), mathematical structure), and their Structure (mathematical logic), models (those Structure (mathematical logic), structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be definable set, defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Characteristic (field)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest positive number of copies of the ring's multiplicative identity () that will sum to the additive identity (). If no such number exists, the ring is said to have characteristic zero. That is, is the smallest positive number such that: : \underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: : \underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). This definition applies in the more general class of rngs (see '); for (unital) rings the two definitions are equivalent due to their distributive law. Equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE