Stable Cohomotopy Theory
This is a list of some of the ordinary and generalized (or extraordinary) homology and cohomology theories in algebraic topology that are defined on the categories of CW complexes or spectra. For other sorts of homology theories see the links at the end of this article. Notation *S=\pi=S^0 is the sphere spectrum. *S^n is the spectrum of the n-dimensional sphere *S^nY=S^n\land Y is the nth suspension of a spectrum Y. * ,Y/math> is the abelian group of morphisms from the spectrum X to the spectrum Y, given (roughly) as homotopy classes of maps. * ,Yn= ^nX,Y/math> * ,Y* is the graded abelian group given as the sum of the groups ,Yn. *\pi_n(X)= ^n,X ,Xn is the nth stable homotopy group of X. *\pi_*(X) is the sum of the groups \pi_n(X), and is called the coefficient ring of X when X is a ring spectrum. *X\land Y is the smash product of two spectra. If X is a spectrum, then it defines generalized homology and cohomology theories on the category of spectra as follows: *X_n(Y)= ,X\la ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Generalized Cohomology Theory
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are function (mathematics), functions on the group of chain (algebraic topology), chains in homology theory. From its start in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and abstract algebra, algebra. The terminology tends to hide the fact that cohomology, a Covariance and contravariance of functors, c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Sheaf Cohomology
In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions (holes) to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper. Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria. From 1940 to 1945, Leray and other prisoners organized a "université en captivité" in the camp. Leray's definitions were simplified and clarified in the 1950s. It became clear that sheaf cohomology was not only a new approach to cohomology in algebraic topology, but also a powerful method in complex analytic geometry and algebraic geometry. These subjects often involve constructing global functions with specified local properties, and sheaf cohomology is ideally suited to such ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Framed Manifold
In mathematics, a differentiable manifold M of dimension ''n'' is called parallelizable if there exist smooth vector fields \ on the manifold, such that at every point p of M the tangent vectors \ provide a basis of the tangent space at p. Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a global section on M. A particular choice of such a basis of vector fields on M is called a parallelization (or an absolute parallelism) of M. Examples *An example with n = 1 is the circle: we can take ''V''1 to be the unit tangent vector field, say pointing in the anti-clockwise direction. The torus of dimension n is also parallelizable, as can be seen by expressing it as a cartesian product of circles. For example, take n = 2, and construct a torus from a square of graph paper with opposite edges glued together, to get an idea of the two tangent directions at each point. More generally, every Lie group ''G'' is parallelizable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Stable Homotopy Groups Of Spheres
In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute. The -dimensional unit sphere — called the -sphere for brevity, and denoted as — generalizes the familiar circle () and the ordinary sphere (). The -sphere may be defined geometrically as the set of points in a Euclidean space of dimension located at a unit distance from the origin. The -th ''homotopy group'' summarizes the different ways in which the -dimensional sphere can be mapped continuously into the sphere . This summary does not distinguish between two mappings if one can be continuously deformed to the oth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Sphere Spectrum
In stable homotopy theory, a branch of mathematics, the sphere spectrum ''S'' is the monoidal unit in the category of spectra. It is the suspension spectrum of ''S''0, i.e., a set of two points. Explicitly, the ''n''th space in the sphere spectrum is the ''n''-dimensional sphere ''S''''n'', and the structure maps from the suspension of ''S''''n'' to ''S''''n''+1 are the canonical homeomorphisms. The ''k''-th homotopy group of a sphere spectrum is the ''k''-th stable homotopy group of spheres. The localization of the sphere spectrum at a prime number ''p'' is called the local sphere at ''p'' and is denoted by S_. See also * Chromatic homotopy theory * Adams-Novikov spectral sequence *Framed cobordism Framed may refer to: Common meanings *A painting or photograph that has been placed within a picture frame *Someone falsely shown to be guilty of a crime as part of a frameup Film and television *Framed (1930 film), ''Framed'' (1930 film), a pre ... References * Algebraic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Cohomotopy
In mathematics, particularly algebraic topology, cohomotopy sets are particular contravariant functors from the category of pointed topological spaces and basepoint-preserving continuous maps to the category of sets and functions. They are dual to the homotopy groups, but less studied. Overview The ''p''-th cohomotopy set of a pointed topological space ''X'' is defined by :\pi^p(X) = ,S^p/math> the set of pointed homotopy classes of continuous mappings from X to the ''p''-sphere S^p. For ''p'' = 1 this set has an abelian group structure, and is called the Bruschlinsky group. Provided X is a CW-complex, it is isomorphic to the first cohomology group H^1(X), since the circle S^1 is an Eilenberg–MacLane space of type K(\mathbb,1). A theorem of Heinz Hopf states that if X is a CW-complex of dimension at most ''p'', then ,S^p/math> is in bijection with the ''p''-th cohomology group H^p(X). The set ,S^p/math> also has a natural group structure if X is a suspension \Sigma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Stable Homotopy Theory
In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space X, the homotopy groups \pi_(\Sigma^n X) stabilize for n sufficiently large. In particular, the homotopy groups of spheres \pi_(S^n) stabilize for n\ge k + 2. For example, :\langle \text_\rangle = \Z = \pi_1(S^1)\cong \pi_2(S^2)\cong \pi_3(S^3)\cong\cdots :\langle \eta \rangle = \Z = \pi_3(S^2)\to \pi_4(S^3)\cong \pi_5(S^4)\cong\cdots In the two examples above all the maps between homotopy groups are applications of the suspension functor. The first example is a standard corollary of the Hurewicz theorem, that \pi_n(S^n)\cong \Z. In the second example the Hopf map, \eta, is mapped to its suspension \Sigma\eta, which generates \pi_4(S^3)\cong \Z/2. One of the mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Thom Space
In mathematics, the Thom space, Thom complex, or Pontryagin–Thom construction (named after René Thom and Lev Pontryagin) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space. Construction of the Thom space One way to construct this space is as follows. Let :p\colon E \to B be a rank ''n'' real vector bundle over the paracompact space ''B''. Then for each point ''b'' in ''B'', the fiber E_b is an ''n''-dimensional real vector space. We can form an ''n''-sphere bundle \operatorname(E) \to B by taking the one-point compactification of each fiber and gluing them together to get the total space. Finally, from the total space \operatorname(E) we obtain the Thom space T(E) as the quotient of \operatorname(E) by ''B''; that is, by identifying all the new points to a single point \infty, which we take as the basepoint of T(E). If ''B'' is compact, then T(E) is the one-point compactification of ''E''. For ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a Neighbourhood (mathematics), neighborhood that is homeomorphic to an open (topology), open subset of n-dimensional Euclidean space. One-dimensional manifolds include Line (geometry), lines and circles, but not Lemniscate, self-crossing curves such as a figure 8. Two-dimensional manifolds are also called Surface (topology), surfaces. Examples include the Plane (geometry), plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Cobordism
In mathematics, cobordism is a fundamental equivalence relation on the class of compact space, compact manifolds of the same dimension, set up using the concept of the boundary (topology), boundary (French ''wikt:bord#French, bord'', giving ''cobordism'') of a manifold. Two manifolds of the same dimension are ''cobordant'' if their disjoint union is the ''boundary'' of a compact manifold one dimension higher. The boundary of an (n+1)-dimensional manifold W is an n-dimensional manifold \partial W that is closed, i.e., with empty boundary. In general, a closed manifold need not be a boundary: cobordism theory is the study of the difference between all closed manifolds and those that are boundaries. The theory was originally developed by René Thom for smooth manifolds (i.e., differentiable), but there are now also versions for Piecewise linear manifold, piecewise linear and topological manifolds. A ''cobordism'' between manifolds M and N is a compact manifold W whose boundary is th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
University Of California, Berkeley
The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after the Anglo-Irish philosopher George Berkeley, it is the state's first land-grant university and is the founding campus of the University of California system. Berkeley has an enrollment of more than 45,000 students. The university is organized around fifteen schools of study on the same campus, including the UC Berkeley College of Chemistry, College of Chemistry, the UC Berkeley College of Engineering, College of Engineering, UC Berkeley College of Letters and Science, College of Letters and Science, and the Haas School of Business. It is Carnegie Classification of Institutions of Higher Education, classified among "R1: Doctoral Universities – Very high research activity". Lawrence Berkeley National Laboratory was originally founded as par ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Laurent Polynomials
In mathematics, a Laurent polynomial (named after Pierre Alphonse Laurent) in one variable over a field \mathbb is a linear combination of positive and negative powers of the variable with coefficients in \mathbb. Laurent polynomials in X form a ring denoted \mathbb , X^/math>. They differ from ordinary polynomials in that they may have terms of negative degree. The construction of Laurent polynomials may be iterated, leading to the ring of Laurent polynomials in several variables. Laurent polynomials are of particular importance in the study of complex variables. Definition A Laurent polynomial with coefficients in a field \mathbb is an expression of the form : p = \sum_k p_k X^k, \quad p_k \in \mathbb where X is a formal variable, the summation index k is an integer (not necessarily positive) and only finitely many coefficients p_ are non-zero. Two Laurent polynomials are equal if their coefficients are equal. Such expressions can be added, multiplied, and brought back to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |