Redox-sensitive Green Fluorescent Protein
   HOME
*





Redox-sensitive Green Fluorescent Protein
The reduction-oxidation sensitive green fluorescent protein (roGFP) is a green fluorescent protein engineered to be sensitive to changes in the local redox environment. roGFPs are used as redox-sensitive biosensors. In 2004, researchers in S. James Remington's lab at the University of Oregon constructed the first roGFPs by introducing two cysteines into the beta barrel structure of GFP. The resulting engineered protein could exist in two different oxidation states (reduced dithiol or oxidized disulfide), each with different fluorescent properties. Originally, members of the Remington lab published six versions of roGFP, termed roGFP1-6 (see more structural details below). Different groups of researchers introduced cysteines at different locations in the GFP molecule, generally finding that cysteines introduced at the amino acid positions 147 and 204 produced the most robust results. roGFPs are often genetically encoded into cells for ''in-vivo'' imaging of redox potential. In ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Green Fluorescent Protein
The green fluorescent protein (GFP) is a protein that exhibits bright green fluorescence when exposed to light in the blue to ultraviolet range. The label ''GFP'' traditionally refers to the protein first isolated from the jellyfish '' Aequorea victoria'' and is sometimes called ''avGFP''. However, GFPs have been found in other organisms including corals, sea anemones, zoanithids, copepods and lancelets. The GFP from ''A. victoria'' has a major excitation peak at a wavelength of 395 nm and a minor one at 475 nm. Its emission peak is at 509 nm, which is in the lower green portion of the visible spectrum. The fluorescence quantum yield (QY) of GFP is 0.79. The GFP from the sea pansy ('' Renilla reniformis'') has a single major excitation peak at 498 nm. GFP makes for an excellent tool in many forms of biology due to its ability to form an internal chromophore without requiring any accessory cofactors, gene products, or enzymes / substrates other than mol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE