Reduct
   HOME





Reduct
In universal algebra and in model theory, a reduct of an algebraic structure is obtained by omitting some of the operations and relations of that structure. The opposite of "reduct" is "expansion". Definition Let ''A'' be an algebraic structure (in the sense of universal algebra) or a structure in the sense of model theory, organized as a set ''X'' together with an indexed family of operations and relations φ''i'' on that set, with index set ''I''. Then the reduct of ''A'' defined by a subset ''J'' of ''I'' is the structure consisting of the set ''X'' and ''J''-indexed family of operations and relations whose ''j''-th operation or relation for ''j'' ∈ ''J'' is the ''j''-th operation or relation of ''A''. That is, this reduct is the structure ''A'' with the omission of those operations and relations φ''i'' for which ''i'' is not in ''J''. A structure ''A'' is an expansion of ''B'' just when ''B'' is a reduct of ''A''. That is, reduct and expansion are mutual converses. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Model Theory
In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mathematical logic), mathematical structure), and their Structure (mathematical logic), models (those Structure (mathematical logic), structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be definable set, defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE