Positive Set Theory
In mathematical logic, positive set theory is the name for a class of alternative set theories in which the axiom of comprehension holds for at least the positive formulas \phi (the smallest class of formulas containing atomic membership and equality formulas and closed under conjunction, disjunction, existential and universal quantification). Typically, the motivation for these theories is topological: the sets are the classes which are closed under a certain topology. The closure conditions for the various constructions allowed in building positive formulas are readily motivated (and one can further justify the use of universal quantifiers bounded in sets to get generalized positive comprehension): the justification of the existential quantifier seems to require that the topology be compact. Axioms The set theory \mathrm^+_\infty of Olivier Esser consists of the following axioms: Extensionality \forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \to x = y ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Comprehension
In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation (''Aussonderungsaxiom''), subset axiom, axiom of class construction, or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set. Some mathematicians call it the axiom schema of comprehension, although others use that term for ''unrestricted'' comprehension, discussed below. Because restricting comprehension avoided Russell's paradox, several mathematicians including Zermelo, Fraenkel, and Gödel considered it the most important axiom of set theory. Statement One instance of the schema is included for each formula \varphi in the language of set theory with free variables among ''x'', ''w''1, ..., ''w''''n'', ''A''. So ''B'' does not occur free in \varphi. In the formal language of set theory, the axiom schema is: :\forall w_1,\ldots,w_n \, \forall A \, \exists B \, \forall x ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Spaces
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One such ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Extensionality
The axiom of extensionality, also called the axiom of extent, is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. The axiom defines what a Set (mathematics), set is. Informally, the axiom means that the two set (mathematics), sets ''A'' and ''B'' are equal if and only if ''A'' and ''B'' have the same members. Etymology The term ''extensionality'', as used in '''Axiom of Extensionality has its roots in logic. An intensional definition describes the necessary and sufficient conditions for a term to apply to an object. For example: "An even number is an integer which is divisible by 2." An extensional definition instead lists all objects where the term applies. For example: "An even number is any one of the following integers: 0, 2, 4, 6, 8..., -2, -4, -6, -8..." In logic, the Extension (logic), extension of a Predicate (mathematical logic), predicate is the set of all things for which the predicate is true. The logical term was introduce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Constants
In logic, a logical constant or constant symbol of a language \mathcal is a symbol that has the same semantic value under every interpretation of \mathcal. Two important types of logical constants are logical connectives and quantifiers. The equality predicate (usually written '=') is also treated as a logical constant in many systems of logic. One of the fundamental questions in the philosophy of logic is "What is a logical constant?"; that is, what special feature of certain constants makes them ''logical'' in nature? Some symbols that are commonly treated as logical constants are: Many of these logical constants are sometimes denoted by alternate symbols (for instance, the use of the symbol "&" rather than "∧" to denote the logical and). Defining logical constants is a major part of the work of Gottlob Frege and Bertrand Russell. Russell returned to the subject of logical constants in the preface to the second edition (1937) of ''The Principles of Mathematics'' noting ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Closure
In topology, the closure of a subset of points in a topological space consists of all points in together with all limit points of . The closure of may equivalently be defined as the union of and its boundary, and also as the intersection of all closed sets containing . Intuitively, the closure can be thought of as all the points that are either in or "very near" . A point which is in the closure of is a point of closure of . The notion of closure is in many ways dual to the notion of interior. Definitions Point of closure For S as a subset of a Euclidean space, x is a point of closure of S if every open ball centered at x contains a point of S (this point can be x itself). This definition generalizes to any subset S of a metric space X. Fully expressed, for X as a metric space with metric d, x is a point of closure of S if for every r > 0 there exists some s \in S such that the distance d(x, s) < r ( is allowed). Another way to express ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Von Neumann–Bernays–Gödel Set Theory
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not. A key theorem of NBG is the class existence theorem, which states that for every formula whose quantifiers range only over sets, there is a class consisting of the sets satisfying the formula. This class is built by mirroring the step-by-step construction of the formula with classes. Since all set-theoretic formulas are constructed from two kinds of atomic formulas (membership and equality ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Infinity
In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908. Formal statement Using first-order logic primitive symbols, the axiom can be expressed as follows: \exist \mathrm \ (\exist o \ (o \in \mathrm \ \land \lnot \exist n \ (n \in o)) \ \land \ \forall x \ (x \in \mathrm \Rightarrow \exist y \ (y \in \mathrm \ \land \ \forall a \ (a \in y \Leftrightarrow (a \in x \ \lor \ a = x))))). If the notations of both set-builder and empty set are allowed: \exists \mathrm \, ( \varnothing \in \mathrm \, \land \, \forall x \, (x \in \mathrm \Rightarrow \, ( x \cup \ ) \in \mathrm ) ). Some mathematicians may call a set built this way an inductive set. Hint: In English, it reads: " There exists a set ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Von Neumann
John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, integrating Basic research, pure and Applied science#Applied research, applied sciences and making major contributions to many fields, including mathematics, physics, economics, computing, and statistics. He was a pioneer in building the mathematical framework of quantum physics, in the development of functional analysis, and in game theory, introducing or codifying concepts including Cellular automaton, cellular automata, the Von Neumann universal constructor, universal constructor and the Computer, digital computer. His analysis of the structure of self-replication preceded the discovery of the structure of DNA. During World War II, von Neumann worked on the Manhattan Project. He developed the mathematical models behind the explosive lense ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |