Parallelization (mathematics)
In mathematics, a parallelization of a manifold M\, of dimension ''n'' is a set of ''n'' global smooth linearly independent vector fields. Formal definition Given a manifold M\, of dimension ''n'', a parallelization of M\, is a set \ of ''n'' smooth vector fields defined on ''all'' of M\, such that for every p\in M\, the set \ is a basis of T_pM\,, where T_pM\, denotes the fiber over p\, of the tangent vector bundle TM\,. A manifold is called parallelizable whenever it admits a parallelization. Examples *Every Lie group is a parallelizable manifold. *The product of parallelizable manifolds is parallelizable. *Every affine space, considered as manifold, is parallelizable. Properties Proposition. A manifold M\, is parallelizable iff there is a diffeomorphism \phi \colon TM \longrightarrow M\times \, such that the first projection of \phi\, is \tau_\colon TM \longrightarrow M\, and for each p\in M\, the second factor—restricted to T_pM\,—is a linear map \phi_ \colon T_pM \rig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chart (topology)
In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual ''charts'' that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles. Charts The definition of an atlas depends on the notion of a ''chart''. A chart for a topological space ''M'' is a homeomorphism \varphi from an open subset ''U'' of ''M'' to an open subset of a Euclidean space. The chart is traditionally recorded as the ordered pair (U, \varphi). When a coordinate system is chosen in the Euclidean space, this defines coordinates on U: the coordinates of a point P of U are defined as the coordinates of \varphi(P). The pair formed by a chart and such a coordinate system is called a local coordinate system, coordinate chart, coordinate patch, coordinate map, or local frame. Formal definition of atl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Web (differential Geometry)
In mathematics, a web permits an intrinsic characterization in terms of Riemannian geometry of the additive separation of variables in the Hamilton–Jacobi equation. Formal definition An orthogonal web (also called an orthogonal grid or Ricci grid) on a Riemannian manifold ''(M,g)'' of dimension ''n'' is a set \mathcal S = (\mathcal S^1,\dots,\mathcal S^n) of ''n'' pairwise transversal and orthogonal foliations of connected submanifolds of codimension ''1''. Note that two submanifolds of codimension ''1'' are orthogonal iff their normal vectors are orthogonal, and that in the case of a nondefinite metric, orthogonality does not imply transversality. Remark Since vector fields can be visualized as stream-lines of a stationary flow or as Faraday’s lines of force, a non-vanishing vector field in space generates a space-filling system of lines through each point, known to mathematicians as a congruence (i.e., a local foliation). Ricci’s idea was to fill an ''n''-dimensional Riem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
G-structure
In differential geometry, a ''G''-structure on an ''n''-manifold ''M'', for a given structure group ''G'', is a principal ''G''- subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''. The notion of ''G''-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(''n'')-structure defines a Riemannian metric, and for the special linear group an SL(''n'',R)-structure is the same as a volume form. For the trivial group, an -structure consists of an absolute parallelism of the manifold. Generalising this idea to arbitrary principal bundles on topological spaces, one can ask if a principal G-bundle over a group G "comes from" a subgroup H of G. This is called reduction of the structure group (to H). Several structures on manifolds, such as a complex structure, a symplectic structure, or a Kähler structure, are ''G''-structures with an additional integrabi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Connection (mathematics)
In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as Tangent vector, tangent vectors or Tensor, tensors in the tangent space, along a curve or family of curves in a ''parallel'' and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport. For instance, an affine connection, the most elementary type of connection, gives a means for parallel transport of tangent space, tangent vectors on a manifold from one point to another along a curve. An affine connection is typically given in the form of a covariant derivative, which gives a means for taking directional derivatives of vector fields, measuring the deviation of a vector field from being parallel in a given direction. Connections are of central importance in modern geometry in large part because they allow a comparison between the local geometry at one point and the local geometry at another point. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Principal Bundle
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equipped with # An action of G on P, analogous to (x, g)h = (x, gh) for a product space (where (x, g) is an element of P and h is the group element from G; the group action is conventionally a right action). # A projection onto X. For a product space, this is just the projection onto the first factor, (x,g) \mapsto x. Unless it is the product space X \times G, a principal bundle lacks a preferred choice of identity cross-section; it has no preferred analog of x \mapsto (x,e). Likewise, there is not generally a projection onto G generalizing the projection onto the second factor, X \times G \to G that exists for the Cartesian product. They may also have a complicated topology that prevents them from being realized as a product space even if a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthonormal Frame Bundle
In mathematics, a frame bundle is a principal fiber bundle F(E) associated with any vector bundle ''E''. The fiber of F(E) over a point ''x'' is the set of all ordered bases, or ''frames'', for ''E_x''. The general linear group acts naturally on F(E) via a change of basis, giving the frame bundle the structure of a principal ''\mathrm(k,\mathbb)''-bundle (where ''k'' is the rank of ''E''). The frame bundle of a smooth manifold is the one associated with its tangent bundle. For this reason it is sometimes called the tangent frame bundle. Definition and construction Let ''E \to X'' be a real vector bundle of rank ''k'' over a topological space ''X''. A frame at a point ''x \in X'' is an ordered basis for the vector space ''E_x''. Equivalently, a frame can be viewed as a linear isomorphism :p : \mathbf^k \to E_x. The set of all frames at ''x'', denoted ''F_x'', has a natural right action by the general linear group ''\mathrm(k,\mathbb)'' of invertible ''k \times k'' matrices: a gr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differentiable Manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart. In formal terms, a differentiable manifold is a topological manifold with a globally defined differential structure. Any topological manifold can be given a differential structure locally by using the homeomorphisms in its atlas and the standard differential structure on a vector space. To induce a global differential structure on the local coordinate systems induced by the homeomorphism ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Open Subset
In mathematics, an open set is a generalization of an open interval in the real line. In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point in it, contains all points of the metric space that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, an open set is a member of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or ''no'' subset can be open except the space itself and the empty set (the indiscrete topology). In pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a Neighbourhood (mathematics), neighborhood that is homeomorphic to an open (topology), open subset of n-dimensional Euclidean space. One-dimensional manifolds include Line (geometry), lines and circles, but not Lemniscate, self-crossing curves such as a figure 8. Two-dimensional manifolds are also called Surface (topology), surfaces. Examples include the Plane (geometry), plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |