Principal Bundle
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a principal bundle is a mathematical object that formalizes some of the essential features of the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equipped with # An action of G on P, analogous to (x, g)h = (x, gh) for a product space (where (x, g) is an element of P and h is the group element from G; the group action is conventionally a right action). # A projection onto X. For a product space, this is just the projection onto the first factor, (x,g) \mapsto x. Unless it is the product space X \times G, a principal bundle lacks a preferred choice of identity cross-section; it has no preferred analog of x \mapsto (x,e). Likewise, there is not generally a projection onto G generalizing the projection onto the second factor, X \times G \to G that exists for the Cartesian product. They may also have a complicated
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
that prevents them from being realized as a product space even if a number of arbitrary choices are made to try to define such a structure by defining it on smaller pieces of the space. A common example of a principal bundle is the frame bundle F(E) of a
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
E, which consists of all ordered bases of the vector space attached to each point. The group G, in this case, is the
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
, which acts on the right in the usual way: by changes of basis. Since there is no natural way to choose an ordered basis of a vector space, a frame bundle lacks a canonical choice of identity cross-section. Principal bundles have important applications in
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
and
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and mathematical gauge theory. They have also found application in
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
where they form part of the foundational framework of physical gauge theories.


Formal definition

A principal G-bundle, where G denotes any
topological group In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
, is a fiber bundle \pi:P \to X together with a continuous right action P \times G \to P such that G preserves the fibers of P (i.e. if y \in P_x then yg \in P_x for all g \in G) and acts freely and transitively (meaning each fiber is a G-torsor) on them in such a way that for each x \in X and y \in P_x, the map G \to P_x sending g to yg is a homeomorphism. In particular each fiber of the bundle is homeomorphic to the group G itself. Frequently, one requires the base space X to be Hausdorff and possibly paracompact. Since the group action preserves the fibers of \pi:P \to X and acts transitively, it follows that the
orbits In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an physical body, object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an satellite, artificia ...
of the G-action are precisely these fibers and the orbit space P/G is homeomorphic to the base space X. Because the action is free and transitive, the fibers have the structure of G-torsors. A G-torsor is a space that is homeomorphic to G but lacks a group structure since there is no preferred choice of an
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
. An equivalent definition of a principal G-bundle is as a G-bundle \pi:P \to X with fiber G where the structure group acts on the fiber by left multiplication. Since right multiplication by G on the fiber commutes with the action of the structure group, there exists an invariant notion of right multiplication by G on P. The fibers of \pi then become right G-torsors for this action. The definitions above are for arbitrary topological spaces. One can also define principal G-bundles in the category of smooth manifolds. Here \pi:P \to X is required to be a smooth map between smooth manifolds, G is required to be a
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
, and the corresponding action on P should be smooth.


Examples


Trivial bundle and sections

Over an open ball U \subset \mathbb^n, or \mathbb^n, with induced coordinates x_1,\ldots,x_n, any principal G-bundle is isomorphic to a trivial bundle
\pi:U\times G \to U
and a smooth section s \in \Gamma(\pi) is equivalently given by a (smooth) function \hat: U \to G since
s(u) = (u,\hat(u)) \in U\times G
for some smooth function. For example, if G=U(2), the Lie group of 2\times 2 unitary matrices, then a section can be constructed by considering four real-valued functions
\phi(x),\psi(x),\Delta(x),\theta(x) : U \to \mathbb
and applying them to the parameterization \hat(x) = e^\begin e^ & 0 \\ 0 & e^ \end \begin \cos \theta(x) & \sin \theta(x) \\ -\sin \theta(x) & \cos \theta(x) \\ \end \begin e^ & 0 \\ 0 & e^ \end. This same procedure valids by taking a parameterization of a collection of matrices defining a Lie group G and by considering the set of functions from a patch of the base space U\subset X to \mathbb and inserting them into the parameterization.


Other examples

* The prototypical example of a smooth principal bundle is the frame bundle of a smooth manifold M, often denoted FM or GL(M). Here the fiber over a point x \in M is the set of all frames (i.e. ordered bases) for the tangent space T_xM. The
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
GL(n,\mathbb) acts freely and transitively on these frames. These fibers can be glued together in a natural way so as to obtain a principal GL(n,\mathbb)-bundle over M. * Variations on the above example include the orthonormal frame bundle of a
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
. Here the frames are required to be
orthonormal In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal unit vectors. A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpe ...
with respect to the
metric Metric or metrical may refer to: Measuring * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics ...
. The structure group is the
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
O(n). The example also works for bundles other than the tangent bundle; if E is any vector bundle of rank k over M, then the bundle of frames of E is a principal GL(k,\mathbb)-bundle, sometimes denoted F(E). * A normal (regular)
covering space In topology, a covering or covering projection is a continuous function, map between topological spaces that, intuitively, Local property, locally acts like a Projection (mathematics), projection of multiple copies of a space onto itself. In par ...
p:C \to X is a principal bundle where the structure group : G = \pi_1(X)/p_(\pi_1(C)) : acts on the fibres of p via the monodromy action. In particular, the
universal cover In topology, a covering or covering projection is a map between topological spaces that, intuitively, locally acts like a projection of multiple copies of a space onto itself. In particular, coverings are special types of local homeomorphism ...
of X is a principal bundle over X with structure group \pi_1(X) (since the universal cover is simply connected and thus \pi_1(C) is trivial). * Let G be a Lie group and let H be a closed subgroup (not necessarily normal). Then G is a principal H-bundle over the (left) coset space G/H. Here the action of H on G is just right multiplication. The fibers are the left cosets of H (in this case there is a distinguished fiber, the one containing the identity, which is naturally isomorphic to H). * Consider the projection \pi:S^1 \to S^1 given by z \mapsto z^2. This principal \mathbb_2-bundle is the
associated bundle Associated may refer to: *Associated, former name of Avon, Contra Costa County, California *Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Associatio ...
of the
Möbius strip In mathematics, a Möbius strip, Möbius band, or Möbius loop is a Surface (topology), surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Bened ...
. Besides the trivial bundle, this is the only principal \mathbb_2-bundle over S^1. *
Projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
s provide some more interesting examples of principal bundles. Recall that the n-
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
S^n is a two-fold covering space of
real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properti ...
\mathbb\mathbb^n. The natural action of O(1) on S^n gives it the structure of a principal O(1)-bundle over \mathbb\mathbb^n. Likewise, S^ is a principal U(1)-bundle over
complex projective space In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
\mathbb\mathbb^n and S^ is a principal Sp(1)-bundle over
quaternionic projective space In mathematics, quaternionic projective space is an extension of the ideas of real projective space and complex projective space, to the case where coordinates lie in the ring of quaternions \mathbb. Quaternionic projective space of dimension ''n'' ...
\mathbb\mathbb^n. We then have a series of principal bundles for each positive n: : \mbox(1) \to S(\mathbb^) \to \mathbb^n : \mbox(1) \to S(\mathbb^) \to \mathbb^n : \mbox(1) \to S(\mathbb^) \to \mathbb^n. : Here S(V) denotes the unit sphere in V (equipped with the Euclidean metric). For all of these examples the n = 1 cases give the so-called Hopf bundles.


Basic properties


Trivializations and cross sections

One of the most important questions regarding any fiber bundle is whether or not it is trivial, ''i.e.'' isomorphic to a product bundle. For principal bundles there is a convenient characterization of triviality: :Proposition. ''A principal bundle is trivial if and only if it admits a global
section Section, Sectioning, or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sig ...
.'' The same is not true in general for other fiber bundles. For instance,
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
s always have a zero section whether they are trivial or not and sphere bundles may admit many global sections without being trivial. The same fact applies to local trivializations of principal bundles. Let be a principal -bundle. An
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
in admits a local trivialization if and only if there exists a local section on . Given a local trivialization :\Phi : \pi^(U) \to U \times G one can define an associated local section :s:U \to \pi^(U);s(x) = \Phi^(x,e)\, where is the identity in . Conversely, given a section one defines a trivialization by :\Phi^(x,g) = s(x)\cdot g. The simple transitivity of the action on the fibers of guarantees that this map is a
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
, it is also a
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
. The local trivializations defined by local sections are -
equivariant In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, ...
in the following sense. If we write :\Phi : \pi^(U) \to U \times G in the form :\Phi(p) = (\pi(p), \varphi(p)), then the map :\varphi : P \to G satisfies :\varphi(p\cdot g) = \varphi(p)g. Equivariant trivializations therefore preserve the -torsor structure of the fibers. In terms of the associated local section the map is given by :\varphi(s(x)\cdot g) = g. The local version of the cross section theorem then states that the equivariant local trivializations of a principal bundle are in one-to-one correspondence with local sections. Given an equivariant local trivialization of , we have local sections on each . On overlaps these must be related by the action of the structure group . In fact, the relationship is provided by the transition functions :t_ : U_i \cap U_j \to G\,. By gluing the local trivializations together using these transition functions, one may reconstruct the original principal bundle. This is an example of the
fiber bundle construction theorem In mathematics, the fiber bundle construction theorem is a theorem which constructs a fiber bundle from a given base space, fiber and a suitable set of Transition map, transition functions. The theorem also gives conditions under which two such bu ...
. For any we have :s_j(x) = s_i(x)\cdot t_(x).


Characterization of smooth principal bundles

If \pi : P \to X is a smooth principal G-bundle then G acts freely and properly on P so that the orbit space P/G is
diffeomorphic In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Defini ...
to the base space X. It turns out that these properties completely characterize smooth principal bundles. That is, if P is a smooth manifold, G a Lie group and \mu : P \times G \to P a smooth, free, and proper right action then *P/G is a smooth manifold, *the natural projection \pi : P \to P/G is a smooth submersion, and *P is a smooth principal G-bundle over P/G.


Use of the notion


Reduction of the structure group

Given a subgroup H of G one may consider the bundle P/H whose fibers are homeomorphic to the coset space G/H. If the new bundle admits a global section, then one says that the section is a reduction of the structure group from G to H . The reason for this name is that the (fiberwise) inverse image of the values of this section form a subbundle of P that is a principal H-bundle. If H is the identity, then a section of P itself is a reduction of the structure group to the identity. Reductions of the structure group do not in general exist. Many topological questions about the structure of a manifold or the structure of bundles over it that are associated to a principal G-bundle may be rephrased as questions about the admissibility of the reduction of the structure group (from G to H). For example: * A 2n-dimensional real manifold admits an almost-complex structure if the frame bundle on the manifold, whose fibers are GL(2n,\mathbb), can be reduced to the group \mathrm(n,\mathbb) \subseteq \mathrm(2n,\mathbb). * An n-dimensional real manifold admits a k-plane field if the frame bundle can be reduced to the structure group \mathrm(k,\mathbb) \subseteq \mathrm(n,\mathbb). * A manifold is
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". A space is o ...
if and only if its frame bundle can be reduced to the
special orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. ...
, \mathrm(n) \subseteq \mathrm(n,\mathbb). * A manifold has
spin structure In differential geometry, a spin structure on an orientable Riemannian manifold allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathemati ...
if and only if its frame bundle can be further reduced from \mathrm(n) to \mathrm(n) the
Spin group In mathematics the spin group, denoted Spin(''n''), page 15 is a Lie group whose underlying manifold is the double cover of the special orthogonal group , such that there exists a short exact sequence of Lie groups (when ) :1 \to \mathbb_2 \to \o ...
, which maps to \mathrm(n) as a double cover. Also note: an n-dimensional manifold admits n vector fields that are linearly independent at each point if and only if its frame bundle admits a global section. In this case, the manifold is called
parallelizable In mathematics, a differentiable manifold M of dimension ''n'' is called parallelizable if there exist Smooth function, smooth vector fields \ on the manifold, such that at every point p of M the tangent vectors \ provide a Basis of a vector space, ...
.


Associated vector bundles and frames

If P is a principal G-bundle and V is a
linear representation Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
of G, then one can construct a vector bundle E=P\times_G V with fibre V, as the quotient of the product P×V by the diagonal action of G. This is a special case of the
associated bundle Associated may refer to: *Associated, former name of Avon, Contra Costa County, California *Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Associatio ...
construction, and E is called an associated vector bundle to P. If the representation of G on V is faithful, so that G is a subgroup of the general linear group GL(V), then E is a G-bundle and P provides a reduction of structure group of the frame bundle of E from GL(V) to G. This is the sense in which principal bundles provide an abstract formulation of the theory of frame bundles.


Classification of principal bundles

Any topological group admits a classifying space : the quotient by the action of of some weakly contractible space, ''e.g.'', a topological space with vanishing
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homo ...
s. The classifying space has the property that any principal bundle over a paracompact manifold ''B'' is isomorphic to a
pullback In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: ...
of the principal bundle ., Theorem 2 In fact, more is true, as the set of isomorphism classes of principal bundles over the base identifies with the set of homotopy classes of maps .


See also

*
Associated bundle Associated may refer to: *Associated, former name of Avon, Contra Costa County, California *Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Associatio ...
*
Vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
*
G-structure In differential geometry, a ''G''-structure on an ''n''-manifold ''M'', for a given structure group ''G'', is a principal ''G''- subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''. The notion of ''G''-structures includes vario ...
*
Reduction of the structure group In differential geometry, a ''G''-structure on an ''n''-manifold ''M'', for a given structure group ''G'', is a principal ''G''- subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''. The notion of ''G''-structures includes vario ...
*
Gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, t ...
* Connection (principal bundle) * G-fibration


References


Sources

* * * * * {{DEFAULTSORT:Principal Bundle Differential geometry Fiber bundles Group actions