Max-plus Algebra
   HOME





Max-plus Algebra
In idempotent analysis, the tropical semiring is a semiring of extended real numbers with the operations of minimum (or maximum) and addition replacing the usual ("classical") operations of addition and multiplication, respectively. The tropical semiring has various applications (see tropical analysis), and forms the basis of tropical geometry. The name ''tropical'' is a reference to the Hungarian-born computer scientist Imre Simon, so named because he lived and worked in Brazil. Definition The ' (or or ) is the semiring (\mathbb \cup \, \oplus, \otimes), with the operations: : x \oplus y = \min\, : x \otimes y = x + y. The operations \oplus and \otimes are referred to as ''tropical addition'' and ''tropical multiplication'' respectively. The identity element for \oplus is +\infty, and the identity element for \otimes is 0. Similarly, the ' (or or or ) is the semiring (\mathbb \cup \, \oplus, \otimes), with operations: : x \oplus y = \max\, : x \otimes y = x + y. The ide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Idempotent Analysis
In mathematical analysis, idempotent analysis is the study of idempotent semirings, such as the tropical semiring. The lack of an additive inverse in the semiring is compensated somewhat by the idempotent rule A \oplus A = A. References

* {{mathanalysis-stub Idempotent analysis, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Idempotence
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency). The term was introduced by American mathematician Benjamin Peirce in 1870 in the context of elements of algebras that remain invariant when raised to a positive integer power, and literally means "(the quality of having) the same power", from + '' potence'' (same + power). Definition An element x of a set S equipped with a binary operator \cdot is said to be ''idempotent'' under \cdot if : . The ''binary operation'' \cdot is said to be ''idempotent'' if : . Examples * In the monoid (\mathbb, \times) of the natural numbers with multiplication, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE