Classical Lie Algebras
   HOME
*





Classical Lie Algebras
The classical Lie algebras are finite-dimensional Lie algebras over a field which can be classified into four types A_n , B_n , C_n and D_n , where for \mathfrak(n) the General linear group, general linear Lie algebra and I_n the n \times n identity matrix: * A_n := \mathfrak(n+1) = \ , the ''special linear Lie algebra''; * B_n := \mathfrak(2n+1) = \ , the ''odd-dimensional orthogonal Lie algebra''; * C_n := \mathfrak(2n) = \ , the ''symplectic Lie algebra''; and * D_n := \mathfrak(2n) = \ , the ''even-dimensional orthogonal Lie algebra''. Except for the low-dimensional cases D_1 = \mathfrak(2) and D_2 = \mathfrak(4) , the classical Lie algebras are Simple Lie algebra, simple. The Moyal bracket, Moyal algebra is an infinite-dimensional Lie algebra that contains all classical Lie algebras as subalgebras. See also * Simple Lie algebra * Classical group References

{{reflist Algebra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative. Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings ( Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras. In physics, Lie groups appear as symmetry groups ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE