Computationally Efficient
   HOME





Computationally Efficient
In computer science, algorithmic efficiency is a property of an algorithm which relates to the amount of computational resources used by the algorithm. Algorithmic efficiency can be thought of as analogous to engineering productivity for a repeating or continuous process. For maximum efficiency it is desirable to minimize resource usage. However, different resources such as time and space complexity cannot be compared directly, so which of two algorithms is considered to be more efficient often depends on which measure of efficiency is considered most important. For example, bubble sort and timsort are both algorithms to sort a list of items from smallest to largest. Bubble sort organizes the list in time proportional to the number of elements squared (O(n^2), see Big O notation), but only requires a small amount of extra memory which is constant with respect to the length of the list (O(1)). Timsort sorts the list in time linearithmic (proportional to a quantity times its loga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Program Optimization
In computer science, program optimization, code optimization, or software optimization is the process of modifying a software system to make some aspect of it work more efficiently or use fewer resources. In general, a computer program may be optimized so that it executes more rapidly, or to make it capable of operating with less memory storage or other resources, or draw less power. Overview Although the term "optimization" is derived from "optimum", achieving a truly optimal system is rare in practice, which is referred to as superoptimization. Optimization typically focuses on improving a system with respect to a specific quality metric rather than making it universally optimal. This often leads to trade-offs, where enhancing one metric may come at the expense of another. One popular example is space-time tradeoff, reducing a program’s execution time by increasing its memory consumption. Conversely, in scenarios where memory is limited, engineers might prioritize a slower ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Memory Footprint
Memory footprint refers to the amount of main memory that a program uses or references while running. The word footprint generally refers to the extent of physical dimensions that an object occupies, giving a sense of its size. In computing, the memory footprint of a software application indicates its runtime memory requirements, while the program executes. This includes all sorts of active memory regions like code segment containing (mostly) program instructions (and occasionally constants), data segment (both initialized and uninitialized), heap memory, call stack, plus memory required to hold any additional data structures, such as symbol tables, debugging data structures, open files, shared libraries mapped to the current process, etc., that the program ever needs while executing and will be loaded at least once during the entire run. Larger programs have larger memory footprints. An application's memory footprint is roughly proportionate to the number and sizes of sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Embedded System
An embedded system is a specialized computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. , it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems. Modern embedded systems are often based on microcontrollers (i.e. microprocessors with integrated memory and peripheral interfaces), but ordinary microprocessors (using external chips for memory and peripheral interface circuits) are also common, especially in more complex systems. In either case, the processor(s) us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smartphone
A smartphone is a mobile phone with advanced computing capabilities. It typically has a touchscreen interface, allowing users to access a wide range of applications and services, such as web browsing, email, and social media, as well as multimedia playback and Streaming media, streaming. Smartphones have built-in cameras, GPS navigation, and support for various communication methods, including voice calls, text messaging, and internet-based messaging apps. Smartphones are distinguished from older-design feature phones by their more advanced hardware capabilities and extensive mobile operating systems, access to the internet, business applications, Mobile payment, mobile payments, and multimedia functionality, including music, video, mobile gaming, gaming, Internet radio, radio, and Mobile television, television. Smartphones typically feature MOSFET, metal–oxide–semiconductor (MOS) integrated circuit (IC) chips, various sensors, and support for multiple wireless communicati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moore's Law
Moore's law is the observation that the Transistor count, number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and Forecasting, projection of a historical trend. Rather than a law of physics, it is an empirical relationship. It is an experience-curve law, a type of law quantifying efficiency gains from experience in production. The observation is named after Gordon Moore, the co-founder of Fairchild Semiconductor and Intel and former CEO of the latter, who in 1965 noted that the number of components per integrated circuit had been exponential growth, doubling every year, and projected this rate of growth would continue for at least another decade. In 1975, looking forward to the next decade, he revised the forecast to doubling every two years, a compound annual growth rate (CAGR) of 41%. Moore's empirical evidence did not directly imply that the historical trend would continue, nevertheless, his prediction has held si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Donald Knuth
Donald Ervin Knuth ( ; born January 10, 1938) is an American computer scientist and mathematician. He is a professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer science. Knuth has been called the "father of the analysis of algorithms". Knuth is the author of the multi-volume work '' The Art of Computer Programming''. He contributed to the development of the rigorous analysis of the computational complexity of algorithms and systematized formal mathematical techniques for it. In the process, he also popularized the asymptotic notation. In addition to fundamental contributions in several branches of theoretical computer science, Knuth is the creator of the TeX computer typesetting system, the related METAFONT font definition language and rendering system, and the Computer Modern family of typefaces. As a writer and scholar, Knuth created the WEB and CWEB computer programming systems des ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Orders Of Magnitude (computing)
This list compares various amounts of computing power in instructions per second organized by order of magnitude in FLOPS. Scientific E notation index: 2 , 3 , 6 , 9 , 12 , 15 , 18 , 21 , 24 , >24 __TOC__ Milliscale computing (10−3) * 2×10−3: average human multiplication of two 10-digit numbers using pen and paper without aids Deciscale computing (10−1) * 1×10−1: multiplication of two 10-digit numbers by a 1940s electromechanical desk calculator * 3×10−1: multiplication on Zuse Z3 and Z4, first programmable digital computers, 1941 and 1945 respectively * 5×10−1: computing power of the average human mental calculation for multiplication using pen and paper Scale computing (100) * 1.2 OP/S: addition on Z3, 1941, and multiplication on Bell Model V, 1946 * 2.4 OP/S: addition on Z4, 1945 Decascale computing (101) * 1.8×101: ENIAC, first programmable electronic digital computer, 1945 * 5×101: upper end of serialized human percepti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE