Categorical Logic
__NOTOC__ Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. In broad terms, categorical logic represents both syntax and semantics by a category (mathematics), category, and an Interpretation (logic), interpretation by a functor. The categorical framework provides a rich conceptual background for logical and type theory, type-theoretic constructions. The subject has been recognisable in these terms since around 1970. Overview There are three important themes in the categorical approach to logic: ;Categorical semantics: Categorical logic introduces the notion of ''structure valued in a category'' C with the classical model theory, model theoretic notion of a structure appearing in the particular case where C is the Category of sets, category of sets and functions. This notion has proven useful when the set-theoreti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diagram Chasing
350px, The commutative diagram used in the proof of the five lemma In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the same result. It is said that commutative diagrams play the role in category theory that equations play in algebra. Description A commutative diagram often consists of three parts: * objects (also known as ''vertices'') * morphisms (also known as ''arrows'' or ''edges'') * paths or composites Arrow symbols In algebra texts, the type of morphism can be denoted with different arrow usages: * A monomorphism may be labeled with a \hookrightarrow or a \rightarrowtail. * An epimorphism may be labeled with a \twoheadrightarrow. * An isomorphism may be labeled with a \overset. * The dashed arrow typically represents the claim that the indicated morphism exists (whenever the rest of the diagram holds); the arrow may be optionally labeled as \ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Martin Hyland
(John) Martin Elliott Hyland is professor of mathematical logic at the University of Cambridge and a fellow of King's College, Cambridge. His interests include mathematical logic, category theory, and theoretical computer science. Education Hyland was educated at the University of Oxford where he was awarded a Doctor of Philosophy degree in 1975 for research supervised by Robin Gandy. Research and career Martin Hyland is best known for his work on category theory applied to logic (proof theory, recursion theory), theoretical computer science ( lambda-calculus and semantics) and higher-dimensional algebra. In particular he is known for work on the effective topos (within topos theory) and on game semantics Game semantics is an approach to Formal semantics (logic), formal semantics that grounds the concepts of truth or Validity (logic), validity on Game theory, game-theoretic concepts, such as the existence of a winning strategy for a player. In this .... His former doctoral ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Effective Topos
In mathematics, the effective topos introduced by captures the mathematical idea of effectivity within the category theoretical framework. Definition Preliminaries Kleene realizability The topos is based on the partial combinatory algebra given by Kleene's first algebra _1. In Kleene's notion of recursive realizability, any predicate is assigned realizing numbers, i.e. a subset of . The extremal propositions are \top and \bot, realized by and \. However in general, this process assigns more data to a proposition than just a binary truth value. A formula with k free variables will give rise to a map in (\mathcal P)^ the values of which is the subset of corresponding realizers. Realizability topoi is a prime example of a realizability topos. These are a class of elementary topoi with an intuitionistic internal logic and fulfilling a form of dependent choice. They are generally not Grothendieck topoi. In particular, the effective topos is (_1). Other realizability topos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Full Subcategory
In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, a subcategory of ''C'' is a category obtained from ''C'' by "removing" some of its objects and arrows. Formal definition Let ''C'' be a category. A subcategory ''S'' of ''C'' is given by *a subcollection of objects of ''C'', denoted ob(''S''), *a subcollection of morphisms of ''C'', denoted hom(''S''). such that *for every ''X'' in ob(''S''), the identity morphism id''X'' is in hom(''S''), *for every morphism ''f'' : ''X'' → ''Y'' in hom(''S''), both the source ''X'' and the target ''Y'' are in ob(''S''), *for every pair of morphisms ''f'' and ''g'' in hom(''S'') the composite ''f'' o ''g'' is in hom(''S'') whenever it is defined. These conditions ensure that ''S'' is a category in its own right: its collection of objects is ob(''S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
System F
System F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML. It was discovered independently by logician Jean-Yves Girard (1972) and computer scientist John C. Reynolds. Whereas simply typed lambda calculus has variables ranging over terms, and binders for them, System F additionally has variables ranging over ''types'', and binders for them. As an example, the fact that the identity function can have any type of the form ''A'' → ''A'' would be formalized in System F as the judgement :\vdash \Lambda\alpha. \lambda x^\alpha.x: \forall\alpha.\alpha \to \alpha where \alpha is a type variable. The upper-case \Lambda is traditionally used to denote type-level functions, as opposed to the lower-ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eugenio Moggi
Eugenio Moggi is a professor of computer science at the University of Genoa, Italy. He first described the general use of monads to structure programs. Biography Academic qualifications: * PhD in Computer Science, University of Edinburgh The University of Edinburgh (, ; abbreviated as ''Edin.'' in Post-nominal letters, post-nominals) is a Public university, public research university based in Edinburgh, Scotland. Founded by the City of Edinburgh Council, town council under th ... 1988Available at thEdinburgh Research Archive * Laurea in Computer Science, University of Pisa 1983 * Diploma, Scuola Normale Superiore di Pisa 1983 References External links Personal page of Eugenio Moggiat the University of Genoa. * Italian computer scientists Living people Alumni of the University of Edinburgh Year of birth missing (living people) {{compu-scientist-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function Space
In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function ''space''. In linear algebra Let be a field and let be any set. The functions → can be given the structure of a vector space over where the operations are defined pointwise, that is, for any , : → , any in , and any in , define \begin (f+g)(x) &= f(x)+g(x) \\ (c\cdot f)(x) &= c\cdot f(x) \end When the domain has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure. For example, if and also itself are vector spaces over , the se ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Section (category Theory)
In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism. In other words, if f: X\to Y and g: Y\to X are morphisms whose composition f \circ g: Y\to Y is the identity morphism on Y, then g is a section of f, and f is a retraction of g. Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative). In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms. In an abelian category, if f: X\to Y is a split epimorphism with split monomorphism g: Y\to X, then X is isomorphic to the direct sum of Y and the kernel of f. The synonym coretraction for section is sometimes seen in the literature, although rarely in recent work. Properties * A section that is also an epimorphism is an isomorphism. Dually a retracti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Untyped Lambda Calculus
In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computation based on function abstraction and application using variable binding and substitution. Untyped lambda calculus, the topic of this article, is a universal machine, a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was logically consistent, and documented it in 1940. Lambda calculus consists of constructing lambda terms and performing reduction operations on them. A term is defined as any valid lambda calculus expression. In the simplest form of lambda calculus, terms are built using only the following rules: # x: A variable is a character or string representing a parameter. # (\lambda x.M): A lambda abstraction is a function definition, taking as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dana Scott
Dana Stewart Scott (born October 11, 1932) is an American logician who is the emeritus Hillman University Professor of Computer Science, Philosophy, and Mathematical Logic at Carnegie Mellon University; he is now retired and lives in Berkeley, California. His work on automata theory earned him the Turing Award in 1976, while his collaborative work with Christopher Strachey in the 1970s laid the foundations of modern approaches to the semantics of programming languages. He has also worked on modal logic, topology, and category theory. Early career He received his B.A. in Mathematics from the University of California, Berkeley, in 1954. He wrote his Ph.D. thesis on ''Convergent Sequences of Complete Theories'' under the supervision of Alonzo Church while at Princeton, and defended his thesis in 1958. Solomon Feferman (2005) writes of this period: After completing his Ph.D. studies, he moved to the University of Chicago, working as an instructor there until 1960. In 1959, h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Classical Logic
Classical logic (or standard logic) or Frege–Russell logic is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this class shares characteristic properties: Gabbay, Dov, (1994). 'Classical vs non-classical logic'. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, (Eds), ''Handbook of Logic in Artificial Intelligence and Logic Programming'', volume 2, chapter 2.6. Oxford University Press. # Law of excluded middle and double negation elimination # Law of noncontradiction, and the principle of explosion # Monotonicity of entailment and idempotency of entailment # Commutativity of conjunction # De Morgan duality: every logical operator is dual to another While not entailed by the preceding conditions, contemporary discussions of classical logic normally only include propositional and first-order logics. Shapiro, Stewart (2000). Classical Logic. In St ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |