In
mathematics, a function space is a
set of
functions between two fixed sets. Often, the
domain
Domain may refer to:
Mathematics
*Domain of a function, the set of input values for which the (total) function is defined
** Domain of definition of a partial function
**Natural domain of a partial function
**Domain of holomorphy of a function
*Do ...
and/or
codomain
In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either ...
will have additional
structure which is inherited by the function space. For example, the set of functions from any set into a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
has a
natural
Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
vector space structure given by
pointwise In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined ...
addition and scalar multiplication. In other scenarios, the function space might inherit a
topological or
metric structure, hence the name function ''space''.
In linear algebra
Let be a vector space over a
field and let be any set. The functions → can be given the structure of a vector space over where the operations are defined pointwise, that is, for any , : → , any in , and any in , define
When the domain has additional structure, one might consider instead the
subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
(or
subspace) of all such functions which respect that structure. For example, if is also a vector space over , the set of
linear maps → form a vector space over with pointwise operations (often denoted
Hom(,)). One such space is the
dual space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by con ...
of : the set of
linear functionals → with addition and scalar multiplication defined pointwise.
Examples
Function spaces appear in various areas of mathematics:
* In
set theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
, the set of functions from ''X'' to ''Y'' may be denoted ''X'' → ''Y'' or ''Y''
''X''.
** As a special case, the
power set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is ...
of a set ''X'' may be identified with the set of all functions from ''X'' to , denoted 2
''X''.
* The set of
bijections from ''X'' to ''Y'' is denoted
. The factorial notation ''X''! may be used for permutations of a single set ''X''.
* In
functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined ...
, the same is seen for
continuous linear transformations, including
topologies on the vector spaces in the above, and many of the major examples are function spaces carrying a
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
; the best known examples include
Hilbert space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natu ...
s and
Banach space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between ve ...
s.
* In
functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined ...
, the set of all functions from the
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
s to some set ''X'' is called a ''
sequence space
In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural ...
''. It consists of the set of all possible
sequences
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
of elements of ''X''.
* In
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, one may attempt to put a topology on the space of continuous functions from a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
''X'' to another one ''Y'', with utility depending on the nature of the spaces. A commonly used example is the
compact-open topology, e.g.
loop space
In topology, a branch of mathematics, the loop space Ω''X'' of a pointed topological space ''X'' is the space of (based) loops in ''X'', i.e. continuous pointed maps from the pointed circle ''S''1 to ''X'', equipped with the compact-open topo ...
. Also available is the
product topology
In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seem ...
on the space of set theoretic functions (i.e. not necessarily continuous functions) ''Y''
''X''. In this context, this topology is also referred to as the
topology of pointwise convergence.
* In
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
, the study of
homotopy theory
In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topol ...
is essentially that of discrete invariants of function spaces;
* In the theory of
stochastic processes, the basic technical problem is how to construct a
probability measure
In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more g ...
on a function space of ''paths of the process'' (functions of time);
* In
category theory, the function space is called an
exponential object or
map object. It appears in one way as the representation
canonical bifunctor
In mathematics, specifically in category theory, hom-sets (i.e. sets of morphisms between objects) give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and ...
; but as (single) functor, of type
'X'', - it appears as an
adjoint functor
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are k ...
to a functor of type (-×''X'') on objects;
* In
functional programming
In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that ...
and
lambda calculus
Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation t ...
,
function types are used to express the idea of
higher-order functions.
* In
domain theory
Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in compute ...
, the basic idea is to find constructions from
partial order
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
s that can model lambda calculus, by creating a well-behaved
Cartesian closed category
In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in ...
.
* In the
representation theory of finite groups
The representation theory of groups is a part of mathematics which examines how groups act on given structures.
Here the focus is in particular on operations of groups on vector spaces. Nevertheless, groups acting on other groups or on sets are ...
, given two finite-dimensional representations and of a group , one can form a representation of over the vector space of linear maps Hom(,) called the
Hom representation In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be ...
.
Functional analysis
Functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined ...
is organized around adequate techniques to bring function spaces as
topological vector space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis.
A topological vector space is a vector space that is al ...
s within reach of the ideas that would apply to
normed space
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "lengt ...
s of finite dimension. Here we use the real line as an example domain, but the spaces below exist on suitable open subsets
*
continuous functions endowed with the uniform norm topology
*
continuous functions with
compact support
In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smal ...
*
bounded functions
*
continuous functions which vanish at infinity
*
continuous functions that have continuous first ''r'' derivatives.
*
smooth functions
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if ...
*
smooth functions
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if ...
with
compact support
In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smal ...
*
real analytic functions
*
, for
, is the
Lp space of
measurable functions whose ''p''-norm
is finite
*
, the
Schwartz space of
rapidly decreasing smooth functions
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if ...
and its continuous dual,
tempered distributions
*
compact support in limit topology
*
Sobolev space
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of ''Lp''-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense ...
of functions whose
weak derivatives up to order ''k'' are in
*
holomorphic functions
* linear functions
* piecewise linear functions
* continuous functions, compact open topology
* all functions, space of pointwise convergence
*
Hardy space
In complex analysis, the Hardy spaces (or Hardy classes) ''Hp'' are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In ...
*
Hölder space
*
Càdlàg functions, also known as the
Skorokhod space
*
, the space of all
Lipschitz Lipschitz, Lipshitz, or Lipchitz, is an Ashkenazi Jewish (Yiddish/German-Jewish) surname. The surname has many variants, including: Lifshitz (Lifschitz), Lifshits, Lifshuts, Lefschetz; Lipschitz, Lipshitz, Lipshits, Lopshits, Lipschutz (Lipschütz ...
functions on
that vanish at zero.
Norm
If is an element of the function space
of all
continuous functions that are defined on a
closed interval
In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Othe ...
, the
norm defined on
is the maximum
absolute value of for ,
is called the ''
uniform norm
In mathematical analysis, the uniform norm (or ) assigns to real- or complex-valued bounded functions defined on a set the non-negative number
:\, f\, _\infty = \, f\, _ = \sup\left\.
This norm is also called the , the , the , or, when ...
'' or ''supremum norm'' ('sup norm').
Bibliography
* Kolmogorov, A. N., & Fomin, S. V. (1967). Elements of the theory of functions and functional analysis. Courier Dover Publications.
* Stein, Elias; Shakarchi, R. (2011). Functional Analysis: An Introduction to Further Topics in Analysis. Princeton University Press.
See also
*
List of mathematical functions
*
Clifford algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hyperc ...
*
Tensor field
In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space (typically a Euclidean space or manifold). Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analys ...
*
Spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result ...
*
Functional determinant
References
{{Authority control
Topology of function spaces
Linear algebra