HOME





Antichain
In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable. The size of the largest antichain in a partially ordered set is known as its width. By Dilworth's theorem, this also equals the minimum number of chains (totally ordered subsets) into which the set can be partitioned. Dually, the height of the partially ordered set (the length of its longest chain) equals by Mirsky's theorem the minimum number of antichains into which the set can be partitioned. The family of all antichains in a finite partially ordered set can be given join and meet operations, making them into a distributive lattice. For the partially ordered system of all subsets of a finite set, ordered by set inclusion, the antichains are called Sperner families and their lattice is a free distributive lattice, with a Dedekind number of elements. More generally, counting the number of antichains of a finite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Dilworth's Theorem
In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem states that, in any finite partially ordered set, the maximum size of an antichain of incomparable elements equals the minimum number of chains needed to cover all elements. This number is called the width of the partial order. The theorem is named for the mathematician Robert P. Dilworth, who published it in 1950. A version of the theorem for infinite partially ordered sets states that, when there exists a decomposition into finitely many chains, or when there exists a finite upper bound on the size of an antichain, the sizes of the largest antichain and of the smallest chain decomposition are again equal. Statement An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Mirsky's Theorem
In mathematics, in the areas of order theory and combinatorics, Mirsky's theorem characterizes the height of any finite partially ordered set in terms of a partition of the order into a minimum number of antichains. It is named for and is closely related to Dilworth's theorem on the widths of partial orders, to the perfection of comparability graphs, to the Gallai–Hasse–Roy–Vitaver theorem relating longest paths and colorings in graphs, and to the Erdős–Szekeres theorem on monotonic subsequences. The theorem The height of a partially ordered set is defined to be the maximum cardinality of a chain, a totally ordered subset of the given partial order. For instance, in the set of positive integers from 1 to ''N'', ordered by divisibility, one of the largest chains consists of the powers of two that lie within that range, from which it follows that the height of this partial order is 1+\lfloor\log_2 N\rfloor. Mirsky's theorem states that, for every finite partially ordere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Dedekind Number
File:Monotone Boolean functions 0,1,2,3.svg, 400px, The free distributive lattices of monotonic Boolean functions on 0, 1, 2, and 3 arguments, with 2, 3, 6, and 20 elements respectively (move mouse over right diagram to see description) circle 659 623 30 circle 658 552 35 circle 587 480 35 circle 659 481 35 circle 729 481 35 circle 588 410 35 circle 658 410 35 circle 729 410 35 circle 548 339 30 circle 604 339 30 circle 758 339 30 circle 661 339 35 circle 588 268 35 circle 659 267 35 circle 729 268 35 circle 588 197 35 circle 658 197 35 circle 729 197 35 circle 658 126 35 circle 659 56 30 desc bottom-left In mathematics, the Dedekind numbers are a rapidly growing integer sequence, sequence of integers named after Richard Dedekind, who defined them in 1897. The Dedekind number M(n) is the number of monotone Boolean functions of n variables. Equivalently, it is the number of antichains of subsets of an n-element set, the number of elements in a free distribut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Strong Antichain
In order theory, a subset ''A'' of a partially ordered set ''P'' is a strong downwards antichain if it is an antichain In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable. The size of the largest antichain in a partially ordered set is known as its wid ... in which no two distinct elements have a common lower bound in ''P'', that is, :\forall x, y \in A \; meet semilattice), since by definition, every two elements in a lattice (or meet semilattice) must have a common lower bound. Thus lattices have only trivial strong antichains (i.e., strong antichains of cardinality at most 1). References

* {{refend Order theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Lower Set
In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger than ''s'' (that is, if s < x), then ''x'' is in ''S''. In other words, this means that any ''x'' element of ''X'' that is \,\geq\, to some element of ''S'' is necessarily also an element of ''S''. The term lower set (also called a downward closed set, down set, decreasing set, initial segment, or semi-ideal) is defined similarly as being a subset ''S'' of ''X'' with the property that any element ''x'' of ''X'' that is \,\leq\, to some element of ''S'' is necessarily also an element of ''S''.


Definition

Let (X, \leq) be a preordered set. An in X (also called an , an , or an set) is a subset U \subseteq X that is "closed under going up", in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Free Distributive Lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. Definition As in the case of arbitrary lattices, one can choose to consider a distributive lattice ''L'' either as a structure of order theory or of universal algebra. Both views and their mutual correspondence are discussed in the article on lattices. In the present situation, the algebraic description appears to be more convenient. A lattice (''L'',∨,∧) is distributive if the following additional identity holds for all ''x'', ''y'', and ''z'' in ''L'': : ''x'' ∧ (''y'' ∨ ''z'') = (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z''). Viewing lattices as partiall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems in general (although one usually is also interested in the actual difference of two numbers, which is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Partially Ordered Set
In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is Reflexive relation, reflexive, antisymmetric relation, antisymmetric, and Transitive relation, transitive. A partially ordered set (poset for short) is an ordered pair P=(X,\leq) consisting of a set X (called the ''ground set'' of P) and a partial order \leq on X. When the meaning is clear from context and there is no ambiguity about the partial order, the set X itself is sometimes called a poset. Partial order relations The term ''partial order'' usually refers to the reflexive partial order relatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Distributive Lattice
In mathematics, a distributive lattice is a lattice (order), lattice in which the operations of join and meet distributivity, distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union (set theory), union and intersection (set theory), intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to order isomorphism, isomorphism—given as such a lattice of sets. Definition As in the case of arbitrary lattices, one can choose to consider a distributive lattice ''L'' either as a structure of order theory or of universal algebra. Both views and their mutual correspondence are discussed in the article on lattice (order), lattices. In the present situation, the algebraic description appears to be more convenient. A lattice (''L'',∨,∧) is distributive if the following additional identity holds for all ''x'', ''y'', and ''z'' i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Sperner Family
In combinatorics, a Sperner family (or Sperner system; named in honor of Emanuel Sperner), or clutter, is a family ''F'' of subsets of a finite set ''E'' in which none of the sets contains another. Equivalently, a Sperner family is an antichain in the inclusion lattice over the power set of ''E''. A Sperner family is also sometimes called an independent system or irredundant set. Sperner families are counted by the Dedekind numbers, and their size is bounded by Sperner's theorem and the Lubell–Yamamoto–Meshalkin inequality. They may also be described in the language of hypergraphs rather than set families, where they are called clutters. Dedekind numbers The number of different Sperner families on a set of ''n'' elements is counted by the Dedekind numbers, the first few of which are :2, 3, 6, 20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788 . Although accurate asymptotic estimates are known for larger values of ''n'', it is unknown whether there exists ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]