HOME





Antichain
In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable. The size of the largest antichain in a partially ordered set is known as its width. By Dilworth's theorem, this also equals the minimum number of chains (totally ordered subsets) into which the set can be partitioned. Dually, the height of the partially ordered set (the length of its longest chain) equals by Mirsky's theorem the minimum number of antichains into which the set can be partitioned. The family of all antichains in a finite partially ordered set can be given join and meet operations, making them into a distributive lattice. For the partially ordered system of all subsets of a finite set, ordered by set inclusion, the antichains are called Sperner families and their lattice is a free distributive lattice, with a Dedekind number of elements. More generally, counting the number of antichains of a finite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dilworth's Theorem
In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem characterizes the width of any finite partially ordered set in terms of a partition of the order into a minimum number of chains. It is named for the mathematician . An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest antichain has the same size as the smallest chain decomposition. Here, the size of the antichain is its number of elements, and the size of the chain decomposition is its number of chains. The width of the partial order is defined as the common size of the antichain and chain decomposition. A version of the theorem for infinite partially ordered sets states that, when there exists a decomposition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mirsky's Theorem
In mathematics, in the areas of order theory and combinatorics, Mirsky's theorem characterizes the height of any finite partially ordered set in terms of a partition of the order into a minimum number of antichains. It is named for and is closely related to Dilworth's theorem on the widths of partial orders, to the perfection of comparability graphs, to the Gallai–Hasse–Roy–Vitaver theorem relating longest paths and colorings in graphs, and to the Erdős–Szekeres theorem on monotonic subsequences. The theorem The height of a partially ordered set is defined to be the maximum cardinality of a chain, a totally ordered subset of the given partial order. For instance, in the set of positive integers from 1 to ''N'', ordered by divisibility, one of the largest chains consists of the powers of two that lie within that range, from which it follows that the height of this partial order is 1+\lfloor\log_2 N\rfloor. Mirsky's theorem states that, for every finite partially ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dedekind Number
File:Monotone Boolean functions 0,1,2,3.svg, 400px, The free distributive lattices of monotonic Boolean functions on 0, 1, 2, and 3 arguments, with 2, 3, 6, and 20 elements respectively (move mouse over right diagram to see description) circle 659 623 30 circle 658 552 35 circle 587 480 35 circle 659 481 35 circle 729 481 35 circle 588 410 35 circle 658 410 35 circle 729 410 35 circle 548 339 30 circle 604 339 30 circle 758 339 30 circle 661 339 35 circle 588 268 35 circle 659 267 35 circle 729 268 35 circle 588 197 35 circle 658 197 35 circle 729 197 35 circle 658 126 35 circle 659 56 30 desc bottom-left In mathematics, the Dedekind numbers are a rapidly growing sequence of integers named after Richard Dedekind, who defined them in 1897. The Dedekind number ''M''(''n'') counts the number of monotone boolean functions of ''n'' variables. Equivalently, it counts the number of antichains of subsets of an ''n''-element set, the number of elements in a free d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong Antichain
In order theory, a subset ''A'' of a partially ordered set ''P'' is a strong downwards antichain if it is an antichain in which no two distinct elements have a common lower bound in ''P'', that is, :\forall x, y \in A \; meet semilattice In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (mathematics), join (a least upper bound) for any nonempty set, nonempty finite set, finite subset. Duality (order theory), Dually, a meet-semilat ...), since by definition, every two elements in a lattice (or meet semilattice) must have a common lower bound. Thus lattices have only trivial strong antichains (i.e., strong antichains of cardinality at most 1). References *{{Citation , last1=Kunen , first1=Kenneth , authorlink=Kenneth Kunen , title=Set Theory: An Introduction to Independence Proofs , url=https://archive.org/details/settheoryintrodu0000kune/page/53 , publisher=North-Holland Publishing Company , location=North Holland , seri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lower Set
In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger than ''s'' (that is, if s \leq x), then ''x'' is in ''S''. In words, this means that any ''x'' element of ''X'' that is \,\geq\, to some element of ''S'' is necessarily also an element of ''S''. The term lower set (also called a downward closed set, down set, decreasing set, initial segment, or semi-ideal) is defined similarly as being a subset ''S'' of ''X'' with the property that any element ''x'' of ''X'' that is \,\leq\, to some element of ''S'' is necessarily also an element of ''S''. Definition Let (X, \leq) be a preordered set. An in X (also called an , an , or an set) is a subset U \subseteq X that is "closed under going up", in the sense that :for all u \in U and all x \in X, if u \leq x then x \in U. The dual notion is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Distributive Lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. Definition As in the case of arbitrary lattices, one can choose to consider a distributive lattice ''L'' either as a structure of order theory or of universal algebra. Both views and their mutual correspondence are discussed in the article on lattices. In the present situation, the algebraic description appears to be more convenient. A lattice (''L'',∨,∧) is distributive if the following additional identity holds for all ''x'', ''y'', and ''z'' in ''L'': : ''x'' ∧ (''y'' ∨ ''z'') = (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z''). Viewing lattices as partially ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partially Ordered Set
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', or ''x'' and ''y'' are ''inco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distributive Lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. Definition As in the case of arbitrary lattices, one can choose to consider a distributive lattice ''L'' either as a structure of order theory or of universal algebra. Both views and their mutual correspondence are discussed in the article on lattices. In the present situation, the algebraic description appears to be more convenient. A lattice (''L'',∨,∧) is distributive if the following additional identity holds for all ''x'', ''y'', and ''z'' in ''L'': : ''x'' ∧ (''y'' ∨ ''z'') = (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z''). Viewing lattices as part ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sperner Family
In combinatorics, a Sperner family (or Sperner system; named in honor of Emanuel Sperner), or clutter, is a family ''F'' of subsets of a finite set ''E'' in which none of the sets contains another. Equivalently, a Sperner family is an antichain in the inclusion lattice over the power set of ''E''. A Sperner family is also sometimes called an independent system or irredundant set. Sperner families are counted by the Dedekind numbers, and their size is bounded by Sperner's theorem and the Lubell–Yamamoto–Meshalkin inequality. They may also be described in the language of hypergraphs rather than set families, where they are called clutters. Dedekind numbers The number of different Sperner families on a set of ''n'' elements is counted by the Dedekind numbers, the first few of which are :2, 3, 6, 20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788 . Although accurate asymptotic estimates are known for larger values of ''n'', it is unknown whether there exists an e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems (compare with numeral systems) in general (although one usually is also interested in the actual differe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial Time
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally express ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]