Wilson Quotient
The Wilson quotient ''W''(''p'') is defined as: :W(p) = \frac If ''p'' is a prime number, the quotient is an integer by Wilson's theorem; moreover, if ''p'' is composite, the quotient is not an integer. If ''p'' divides ''W''(''p''), it is called a Wilson prime. The integer values of ''W''(''p'') are : : ''W''(2) = 1 : ''W''(3) = 1 : ''W''(5) = 5 : ''W''(7) = 103 : ''W''(11) = 329891 : ''W''(13) = 36846277 : ''W''(17) = 1230752346353 : ''W''(19) = 336967037143579 : ... It is known that :W(p)\equiv B_-B_\pmod, :p-1+ptW(p)\equiv pB_\pmod{p^2}, where B_k is the ''k''-th Bernoulli number In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent function .... Note that the first relation comes from the second one by s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wilson's Theorem
In algebra and number theory, Wilson's theorem states that a natural number ''n'' > 1 is a prime number if and only if the product of all the positive integers less than ''n'' is one less than a multiple of ''n''. That is (using the notations of modular arithmetic), the factorial (n - 1)! = 1 \times 2 \times 3 \times \cdots \times (n - 1) satisfies :(n-1)!\ \equiv\; -1 \pmod n exactly when ''n'' is a prime number. In other words, any integer ''n'' > 1 is a prime number if, and only if, (''n'' − 1)! + 1 is divisible by ''n''. History The theorem was first stated by Ibn al-Haytham . Edward Waring announced the theorem in 1770 without proving it, crediting his student John Wilson for the discovery. Lagrange gave the first proof in 1771. There is evidence that Leibniz was also aware of the result a century earlier, but never published it. Example For each of the values of ''n'' from 2 to 30, the following table shows the number (''n'' −&thinsp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Composite Number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime number, prime, or the Unit (ring theory), unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself. The composite numbers up to 150 are: :4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wilson Prime
In number theory, a Wilson prime is a prime number p such that p^2 divides (p-1)!+1, where "!" denotes the factorial function; compare this with Wilson's theorem, which states that every prime p divides (p-1)!+1. Both are named for 18th-century English mathematician John Wilson; in 1770, Edward Waring credited the theorem to Wilson, although it had been stated centuries earlier by Ibn al-Haytham. The only known Wilson primes are 5, 13, and 563 . Costa et al. write that "the case p=5 is trivial", and credit the observation that 13 is a Wilson prime to . Early work on these numbers included searches by N. G. W. H. Beeger and Emma Lehmer, but 563 was not discovered until the early 1950s, when computer searches could be applied to the problem. If any others exist, they must be greater than 2 × 1013. It has been conjectured that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval ,y/math> is about \log\log_x y. Several c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bernoulli Number
In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of ''m''-th powers of the first ''n'' positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function. The values of the first 20 Bernoulli numbers are given in the adjacent table. Two conventions are used in the literature, denoted here by B^_n and B^_n; they differ only for , where B^_1=-1/2 and B^_1=+1/2. For every odd , . For every even , is negative if is divisible by 4 and positive otherwise. The Bernoulli numbers are special values of the Bernoulli polynomials B_n(x), with B^_n=B_n(0) and B^+_n=B_n(1). The Bernoulli numbers were discovered around the same time by the Swiss mathematician Jacob Bernoulli, after whom they are named, an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermat Quotient
In number theory, the Fermat quotient of an integer ''a'' with respect to an odd prime ''p'' is defined as :q_p(a) = \frac, or :\delta_p(a) = \frac. This article is about the former; for the latter see ''p''-derivation. The quotient is named after Pierre de Fermat. If the base ''a'' is coprime to the exponent ''p'' then Fermat's little theorem says that ''q''''p''(''a'') will be an integer. If the base ''a'' is also a generator of the multiplicative group of integers modulo ''p'', then ''q''''p''(''a'') will be a cyclic number, and ''p'' will be a full reptend prime. Properties From the definition, it is obvious that :\begin q_p(1) &\equiv 0 && \pmod \\ q_p(-a)&\equiv q_p(a) && \pmod\quad (\text 2 \mid p-1) \end In 1850, Gotthold Eisenstein proved that if ''a'' and ''b'' are both coprime to ''p'', then: :\begin q_p(ab) &\equiv q_p(a)+q_p(b) &&\pmod \\ q_p(a^r) &\equiv rq_p(a) &&\pmod \\ q_p(p \mp a) &\equiv q_p(a) \pm \tfrac &&\pmod \\ q_p(p \mp 1) &\equiv \pm 1 && \pmo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |