Van Stockum Dust
In general relativity, the van Stockum dust is an exact solution of the Einstein field equations where the gravitational field is generated by dust rotating about an axis of cylindrical symmetry. Since the density of the dust is ''increasing'' with distance from this axis, the solution is rather artificial, but as one of the simplest known solutions in general relativity, it stands as a pedagogically important example. This solution is named after Willem Jacob van Stockum, who rediscovered it in 1938 independently of a much earlier discovery by Cornelius Lanczos in 1924. It is currently recommended that the solution be referred to as the Lanczos–van Stockum dust. Derivation One way of obtaining this solution is to look for a cylindrically symmetric perfect fluid solution in which the fluid exhibits ''rigid rotation''. That is, we demand that the world lines of the fluid particles form a timelike congruence having nonzero vorticity but vanishing expansion and shear. (In f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
General Relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General theory of relativity, relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time in physics, time, or four-dimensional spacetime. In particular, the ''curvature of spacetime'' is directly related to the energy and momentum of whatever is present, including matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations. Newton's law of universal gravitation, which describes gravity in classical mechanics, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation (called the Lie bracket) is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, ,y= xy - yx . Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: every Lie group gives rise to a Lie algebra, which is the tangent space at the identity. (In this case, the Lie bracket measures the failure of commutativity for the Lie group.) Conversely, to any finite-dimensiona ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed Timelike Curve
In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was first discovered by Willem Jacob van Stockum in 1937 and later confirmed by Kurt Gödel in 1949,Stephen Hawking, '' My Brief History'', chapter 11 who discovered a solution to the equations of general relativity (GR) allowing CTCs known as the Gödel metric; and since then other GR solutions containing CTCs have been found, such as the Tipler cylinder and traversable wormholes. If CTCs exist, their existence would seem to imply at least the theoretical possibility of time travel backwards in time, raising the spectre of the grandfather paradox, although the Novikov self-consistency principle seems to show that such paradoxes could be avoided. Some physicists speculate that the CTCs which appear in certain GR solutions might be ruled out by a future theory of quantum gravity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Covariant Derivative
In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to: Statistics * Covariance matrix, a matrix of covariances between a number of variables * Covariance or cross-covariance between two random variables or data sets * Autocovariance, the covariance of a signal with a time-shifted version of itself * Covariance function, a function giving the covariance of a random field with itself at two locations Algebra and geometry * A covariant (invariant theory) is a bihomogeneous polynomial in and the coefficients of some homogeneous form in that is invariant under some group of linear transformations. * Covariance and contravariance of vectors, properties of how vector coordinates change under a change of basis ** Covariant transformation, a rule that describes how certain physical entities change under a change of coordinate system * Covariance and contravariance of functors, properties of functors * General covariance ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Time Translation
Time-translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time-translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy. In mathematics, the set of all time translations on a given system form a Lie group. There are many symmetries in nature besides time translation, such as spatial translation or rotational symmetries. These symmetries can be broken and explain diverse phenomena such as crystals, superconductivity, and the Higgs mechanism. However, it was thought until very recently that time-translation symmetry could not be broken. Time crystals, a state of matter first observed in 2017, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thought Experiment
A thought experiment is an imaginary scenario that is meant to elucidate or test an argument or theory. It is often an experiment that would be hard, impossible, or unethical to actually perform. It can also be an abstract hypothetical that is meant to test our intuitions about morality or other fundamental philosophical questions. History The ancient Greek , "was the most ancient pattern of mathematical proof", and existed before Euclidean geometry, Euclidean mathematics, where the emphasis was on the conceptual, rather than on the experimental part of a thought experiment. Johann Witt-Hansen established that Hans Christian Ørsted was the first to use the equivalent German term . Ørsted was also the first to use the equivalent term in 1820. By 1883, Ernst Mach used in a different sense, to denote exclusively the conduct of a experiment that would be subsequently performed as a by his students. Physical and mental experimentation could then be contrasted: Mach asked hi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gödel Metric
The Gödel metric, also known as the Gödel solution or Gödel universe, is an exact solution, found in 1949 by Kurt Gödel, of the Einstein field equations in which the stress–energy tensor contains two terms: the first representing the matter density of a homogeneous distribution of swirling dust particles (see dust solution), and the second associated with a negative cosmological constant (see Lambdavacuum solution). This solution has many unusual properties—in particular, the existence of closed time-like curves that would allow time travel in a universe described by the solution. Its definition is somewhat artificial, since the value of the cosmological constant must be carefully chosen to correspond to the density of the dust grains, but this spacetime is an important pedagogical example. Definition Like any other Lorentzian spacetime, the Gödel solution represents the metric tensor in terms of a local coordinate chart. It may be easiest to understand the Gödel u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stationary Spacetime
In general relativity, specifically in the Einstein field equations, a spacetime is said to be stationary if it admits a Killing vector that is Asymptotic curve, asymptotically timelike. Description and analysis In a stationary spacetime, the metric tensor components, g_, may be chosen so that they are all independent of the time coordinate. The line element of a stationary spacetime has the form (i,j = 1,2,3) : ds^ = \lambda (dt - \omega_\, dy^i)^ - \lambda^ h_\, dy^i\,dy^j, where t is the time coordinate, y^ are the three spatial coordinates and h_ is the metric tensor of 3-dimensional space. In this coordinate system the Killing vector field \xi^ has the components \xi^ = (1,0,0,0). \lambda is a positive scalar representing the norm of the Killing vector, i.e., \lambda = g_\xi^\xi^, and \omega_ is a 3-vector, called the twist vector, which vanishes when the Killing vector is hypersurface orthogonal. The latter arises as the spatial components of the twist 4-vector \omega ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Killing Vector
In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a pseudo-Riemannian manifold that preserves the metric tensor. Killing vector fields are the infinitesimal generators of isometries; that is, flows generated by Killing vector fields are continuous isometries of the manifold. This means that the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the ''Killing vector'' will not distort distances on the object. Definition Specifically, a vector field X is a Killing vector field if the Lie derivative with respect to X of the metric tensor g vanishes: : \mathcal_ g = 0 \,. In terms of the Levi-Civita connection, this is : g\left(\nabla_Y X, Z\right) + g\left(Y, \nabla_Z X\right) = 0 for all vectors Y and . In local coordinates, this amounts to the Killing equation : \nabla_\mu X_\nu + \nabla_ X_\mu = 0 \,. This condition is expressed in covariant ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |