Uniform 8-polytope
   HOME
*



picture info

Uniform 8-polytope
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets. A uniform 8-polytope is one which is vertex-transitive, and constructed from uniform 7-polytope facets. Regular 8-polytopes Regular 8-polytopes can be represented by the Schläfli symbol , with v 7-polytope facets around each peak. There are exactly three such convex regular 8-polytopes: # - 8-simplex # - 8-cube # - 8-orthoplex There are no nonconvex regular 8-polytopes. Characteristics The topology of any given 8-polytope is defined by its Betti numbers and torsion coefficients.Richeson, D.; ''Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy'', Princeton, 2008. The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 8-polytopes, whatever their underlying topology. This inad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Regular Polytopes
This article lists the regular polytopes and regular polytope compounds in Euclidean, spherical and hyperbolic spaces. The Schläfli symbol describes every regular tessellation of an ''n''-sphere, Euclidean and hyperbolic spaces. A Schläfli symbol describing an ''n''-polytope equivalently describes a tessellation of an (''n'' − 1)-sphere. In addition, the symmetry of a regular polytope or tessellation is expressed as a Coxeter group, which Coxeter expressed identically to the Schläfli symbol, except delimiting by square brackets, a notation that is called Coxeter notation. Another related symbol is the Coxeter-Dynkin diagram which represents a symmetry group with no rings, and the represents regular polytope or tessellation with a ring on the first node. For example, the cube has Schläfli symbol , and with its octahedral symmetry, ,3or , it is represented by Coxeter diagram . The regular polytopes are grouped by dimension and subgrouped by convex, nonconvex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexicated 8-simplex
In eight-dimensional geometry, a hexicated 8-simplex is a uniform 8-polytope, being a hexication (6th order truncation) of the regular 8-simplex. Coordinates The Cartesian coordinates of the vertices of the ''hexicated 8-simplex'' can be most simply positioned in 9-space as permutations of (0,0,0,1,1,1,1,1,2). This construction is based on facets A facet is a flat surface of a geometric shape, e.g., of a cut gemstone. Facet may also refer to: Arts, entertainment, and media * ''Facets'' (album), an album by Jim Croce * ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ... of the hexicated 9-orthoplex. Images Related polytopes This polytope is one of 135 uniform 8-polytopes with A8 symmetry. Notes References * H.S.M. Coxeter: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

8-cube T37
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol , being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the ''4-cube'') and ''oct'' for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets. It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called an 8-orthoplex and is a part of the infinite family of cross-polytopes. Cartesian coordinates Cartesian coordinates for the vertices of an 8-cube centered at the origin and edge length 2 are : (±1,±1,±1,±1,±1,±1,±1,±1) while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7) with -1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Runcinated 8-orthoplex
In geometry, runcination is an operation that cuts a regular polytope (or honeycomb) simultaneously along the faces, edges, and vertices, creating new facets in place of the original face, edge, and vertex centers. It is a higher order truncation operation, following cantellation, and truncation. It is represented by an extended Schläfli symbol t0,3. This operation only exists for 4-polytopes or higher. This operation is dual-symmetric for regular uniform 4-polytopes and 3-space convex uniform honeycombs. For a regular 4-polytope, the original cells remain, but become separated. The gaps at the separated faces become p-gonal prisms. The gaps between the separated edges become r-gonal prisms. The gaps between the separated vertices become cells. The vertex figure for a regular 4-polytope is an ''q''-gonal antiprism (called an ''antipodium'' if ''p'' and ''r'' are different). For regular 4-polytopes/honeycombs, this operation is also called expansion by Alicia Boole S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

8-cube T47
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol , being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the ''4-cube'') and ''oct'' for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets. It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called an 8-orthoplex and is a part of the infinite family of cross-polytopes. Cartesian coordinates Cartesian coordinates for the vertices of an 8-cube centered at the origin and edge length 2 are : (±1,±1,±1,±1,±1,±1,±1,±1) while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7) with -1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantellated 8-orthoplex
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets. A uniform 8-polytope is one which is vertex-transitive, and constructed from uniform 7-polytope facets. Regular 8-polytopes Regular 8-polytopes can be represented by the Schläfli symbol , with v 7-polytope facets around each peak. There are exactly three such convex regular 8-polytopes: # - 8-simplex # - 8-cube # - 8-orthoplex There are no nonconvex regular 8-polytopes. Characteristics The topology of any given 8-polytope is defined by its Betti numbers and torsion coefficients.Richeson, D.; ''Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy'', Princeton, 2008. The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 8-polytopes, whatever their underlying topology. This inadequa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

8-cube T57
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol , being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the ''4-cube'') and ''oct'' for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets. It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called an 8-orthoplex and is a part of the infinite family of cross-polytopes. Cartesian coordinates Cartesian coordinates for the vertices of an 8-cube centered at the origin and edge length 2 are : (±1,±1,±1,±1,±1,±1,±1,±1) while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7) with -1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truncated 8-orthoplex
In eight-dimensional geometry, a truncated 8-orthoplex is a convex uniform 8-polytope, being a truncation of the regular 8-orthoplex. There are 7 truncation for the 8-orthoplex. Vertices of the truncation 8-orthoplex are located as pairs on the edge of the 8-orthoplex. Vertices of the bitruncated 8-orthoplex are located on the triangular faces of the 8-orthoplex. Vertices of the tritruncated 7-orthoplex are located inside the tetrahedral cells of the 8-orthoplex. The final truncations are best expressed relative to the 8-cube. Truncated 8-orthoplex Alternate names * Truncated octacross (acronym tek) (Jonthan Bowers) Construction There are two Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refle ...s associated with the ''truncated 8-orthoplex'', one with the C8 o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

8-cube T67
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol , being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the ''4-cube'') and ''oct'' for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets. It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called an 8-orthoplex and is a part of the infinite family of cross-polytopes. Cartesian coordinates Cartesian coordinates for the vertices of an 8-cube centered at the origin and edge length 2 are : (±1,±1,±1,±1,±1,±1,±1,±1) while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7) with -1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectified 8-orthoplex
In eight-dimensional geometry, a rectified 8-orthoplex is a convex uniform 8-polytope, being a rectification of the regular 8-orthoplex. There are unique 8 degrees of rectifications, the zeroth being the 8-orthoplex, and the 7th and last being the 8-cube. Vertices of the rectified 8-orthoplex are located at the edge-centers of the 8-orthoplex. Vertices of the birectified 8-orthoplex are located in the triangular face centers of the 8-orthoplex. Vertices of the trirectified 8-orthoplex are located in the tetrahedral cell centers of the 8-orthoplex. Rectified 8-orthoplex The rectified 8-orthoplex has 112 vertices. These represent the root vectors of the simple Lie group D8. The vertices can be seen in 3 hyperplanes, with the 28 vertices rectified 7-simplexs cells on opposite sides, and 56 vertices of an expanded 7-simplex passing through the center. When combined with the 16 vertices of the 8-orthoplex, these vertices represent the 128 root vectors of the B8 and C8 simple Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




8-cube T6
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol , being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the ''4-cube'') and ''oct'' for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets. It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called an 8-orthoplex and is a part of the infinite family of cross-polytopes. Cartesian coordinates Cartesian coordinates for the vertices of an 8-cube centered at the origin and edge length 2 are : (±1,±1,±1,±1,±1,±1,±1,±1) while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7) with -1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


8-orthoplex
In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells ''4-faces'', 1792 ''5-faces'', 1024 ''6-faces'', and 256 ''7-faces''. It has two constructive forms, the first being regular with Schläfli symbol , and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol or Coxeter symbol 511. It is a part of an infinite family of polytopes, called cross-polytopes or ''orthoplexes''. The dual polytope is an 8-hypercube, or octeract. Alternate names * Octacross, derived from combining the family name ''cross polytope'' with ''oct'' for eight (dimensions) in Greek * Diacosipentacontahexazetton as a 256- facetted 8-polytope (polyzetton) As a configuration This configuration matrix represents the 8-orthoplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces, 6-faces and 7-faces. The diagonal numbers say how many of each el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]